WEAK LINKING AND MULTIPLICITIES

Sankar P. DUTTA
Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, USA

Communicated by H. Bass
Received 7 February 1982

Introduction

In this paper we study the notion of weak linking (see Definition 1.7 and its connection to Serre's intersection multiplicity. Thcorem 1.9 provides us with a necessary and sufficient condition for weak linking between two Cohen-Macaulay modules of codimension 1 over a Gorenstein ring in terms of syzygies of the respective modules. An immediate corollary (see 1.12) of this theorem is the fact that modules of finite length, finite projective dimension over a Gorenstein ring R of dimension 1 are weakly linked to $R /(x), x$ a non-zero-divisor on R. Some more corollaries are described in 1.11,1.13 and 1.14 - the latter is of particular interest, since it describes the modules of finite length over $K\left[\left[x^{2}, x^{2 n+1}\right]\right]$ via weak linking.

In Proposition 2.1 we give a necessary and sufficient condition for two $\mathrm{C}-\mathrm{M}$ modules over a $\mathrm{C}-\mathrm{M}$ ring to be isomorphic in terms of their syzgies. This eventually leads in 2.2 to the higher dimensional analogue of Theorem 1.9 which I cannot prove yet. But in 2.2 we show how this higher dimensional analogue implies Serre's intersection multiplicity conjecture (in a more general set-up) when the sum of the dimensions of the modules is less than that of the ring. In 2.10 we answer the following question partially: Given a complete intersection R with $\operatorname{dim} R=1, M$ a module with $l(M)<\infty, N$ a module with $S^{-1} N S^{-1} R$-free, where $S=R-\bigcup P_{i}$, $P_{i} \in \operatorname{Ass}(R)$, is it true that $l\left(M \otimes_{R} N\right) \geq r(N) l(M)$ where $r(N)$ is the $S^{-1} R$ rank of $S^{-1} N$. We show that an affirmative answer to the above question at least when $\operatorname{Tor}_{i}^{R}(M, N)=0$, for all $i>0$, would imply the intersection multiplicity conjecture for a pair of modules with sum of their dimensions less than that of the ring.

In this work all rings are commutative local with identity and all modules are finitely generated.

We say that a local ring R satisfies the vanishing conjecture if given any pair of modules M and N such that

$$
\begin{aligned}
& l\left(M \otimes_{R} N\right)<\infty, \quad \operatorname{pd}_{R} M<\infty, \quad \operatorname{dim} M+\operatorname{dim} N<\operatorname{dim} R, \\
& \chi(M, N)=\sum_{i=0}^{\text {Pd. }}(-1)^{i} /\left(\operatorname{Tor}_{i}^{R}(M, N)\right)=0 .
\end{aligned}
$$

The reader can notice immediately that this is a generalized version of Serre's intersection multiplicity over a regular local ring.

1. Weak linking

1.1. Notation. We use the following abbreviations and notations:

$$
\begin{aligned}
l(M) & =\text { length of the module } M, \\
Q & =\text { the field of rational numbers, } \\
\mathrm{C}-\mathrm{M} & =\text { Cohen-Macaulay, } \\
\text { n.z.d. } & =\text { non-zero divisor, } \\
\text { d.v.r. } & =\text { discrete valuation ring, } \\
Q\{R\} & =\text { total quotient ring of the ring } R, \\
\text { pd } M & =\text { projective dimension of } M, \\
r(N) & =\text { torsion-free rank of } N, \\
Q\{N\} & =N \otimes_{R}\{Q\} R, \\
P^{(n)} & =\left\{x \in R \mid t x \in p^{n} \text { for some } t \in R-P\right\} .
\end{aligned}
$$

Let R be a local ring with 1 . Let M be a finitely generated module with finite projective dimension n. Let N be another finitely generated module with $l(M \otimes N)<\infty$. Then

$$
\chi_{i}(M, N)=\sum_{k=0}^{n-i}(-1)^{k} l\left(\operatorname{Tor}_{i+k}^{R}(M, N)\right)
$$

We leave the proof of the following lemma as an exercise for the reader.
1.2. Special Lemma. Let R be a local ring with 1. Let M be a finitely generated module with $\operatorname{pd} M=n$. Let N be another with $M \otimes_{R} N \neq 0$ and let $\mathrm{Ann}_{R} M$ contain an N-sequence of length r. Then $\operatorname{Tor}_{n-i}^{R}(M, N)-0,0 \leq i<r$.

1.3. Lemma. Let R be a local ring. We consider an exact sequence

$$
0 \rightarrow S \xrightarrow{f} R^{n} \rightarrow M \rightarrow 0
$$

Let $\phi: R^{n} \rightarrow R^{n}$ be given by

$$
\phi\left(e_{1}\right)=x e_{1}, \quad \phi\left(e_{2}\right)=e_{2}, \ldots, \quad \phi\left(e_{n}\right)=e_{n}
$$

where $e_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ with 1 on the i-th place and x is an n.z.d. in R. Then ϕ is injective and there exist exact sequences

$$
0 \rightarrow S \xrightarrow{\phi f} R^{n} \rightarrow M^{1} \rightarrow 0, \quad 0 \rightarrow M \rightarrow M^{1} \rightarrow \frac{R}{(x)} \rightarrow 0 .
$$

Proof. Obvious.

1.4. Lemma. Consider an exact sequence

$$
0 \rightarrow S \xrightarrow{f} R^{n} \rightarrow M \rightarrow 0 .
$$

Let $\phi: R^{n} \rightarrow R^{n}$ be given by

$$
\phi\left(e_{1}\right)=e_{1}, \quad \phi\left(e_{2}\right)=e_{2}-x_{12} e_{1}, \quad \phi\left(e_{3}\right)=e_{3}-x_{13} e_{1}, \ldots, \quad \phi\left(e_{n}\right)=e_{n}-x_{1 n} e_{1} .
$$

Then ϕ is an isomorphism. Let $M^{1}=\operatorname{coker}(\phi \cdot f)$. Then $M=M^{1}$.
Proof. Obvious.
1.5. Lemma. Let R be a local ring. Let $A=\left(a_{i j}\right)$ e an $n \times n$ matrix over R such that $\operatorname{det} A$ is an n.z.d. Then after column operations a_{11} can be replaced by an n.z.d.

Proof. See [4].
1.6. Lemma. Consider an exact sequence

$$
0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0 .
$$

Let syz ${ }^{i} M_{1}$, syz ${ }^{i} M_{3}$ be any specific choices of i-th syzygies for M_{1}, M_{3} (not necessarily minimal). Then

$$
0 \rightarrow \mathrm{syz}^{i} M_{1} \rightarrow \mathrm{syz}^{i} M_{2} \rightarrow \mathrm{syz}^{i} M_{3} \rightarrow 0
$$

is exact for some choice of $\operatorname{syz}^{i} M_{2}$.

Proof. Obvious.

It is clear that if $\mathrm{pd} M_{\mathrm{I}}=i_{0}$, by taking a minimal resolution of M_{1},

$$
\operatorname{syz}^{i_{0}+1} M_{2} \simeq \operatorname{syz}^{i_{0}+1} M_{3},
$$

while if $\mathrm{pd} M_{3}=i_{0}$,

$$
\operatorname{syz}^{i_{0}+1} M_{1} \oplus \operatorname{syz}^{i_{0}+1} M_{3} \simeq \operatorname{syz}^{i_{0}} M_{2}
$$

Finally if pd $M_{2}=i_{0}$,

$$
\operatorname{syz}^{i_{0}} M_{1}=\operatorname{syz}^{1}\left(\operatorname{syz}^{i_{0}} M_{3}\right)=s y z^{i_{0}+1} M_{3}
$$

(since syz ${ }^{i}{ }^{0} M_{2}$ is free).
1.7. Definitions. Let R be a $C-M$ ring. We say that two modules M_{1} and M_{2} are t-linked on the right, or that M_{2} and M_{1} are t-linked on the right, if there exists an exact sequence $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow E \rightarrow 0$ where E is a finite direct sum of cyclic modules of the form

$$
\frac{R}{\left(x_{1}, \ldots, x_{t}\right) R},
$$

where $\left\{x_{1}, \ldots, x_{t}\right\}$ is an R-sequence. Let \wedge be the equivalence relation generated by 'being t-linked on the right' in the category of finitely generated modules over R. We say two modules M_{1}, M_{2} are weakly t-linked on the right if they belong to the same class under \wedge; similarly we define weak t-linkage on the left (respectively in the middle) by placing E on the left (respectively in the middle) in the above sequence.

We say M_{1} and M_{2} are weakly t-linked at the end if they belong to the same class defined by the equivalence relation generated by 'being t-linked on the right' and 'being t-linked on the left'.
M_{1} and M_{2} are weakly t-linked if they belong to the same class defined by the equivalence relation generated by 'being t-linked on the right', 'being t-linked on the left' and 'being t-linked in the middle'.
1.8. Notations. (i) We write $M_{1} \sim, M_{2}$ to express that M_{1} and M_{2} are weakly t-linked. We write $M_{1} \sim_{t} M_{2}$ at the end to express that M_{1} and M_{2} are weakly t-linked at the end.
(ii) For a module T, we denote by $\langle T\rangle$ the projective class of T, i.e. all modules N such that $N \oplus R^{n}=T \oplus R^{t}$ for some $n \geq 0, t \geq 0$.
1.9. Theorem. Let R be a Gorenstein ring of dimension n. Let M_{1}, M_{2} be two $C-M$ modules with $\operatorname{dim} M_{1}=\operatorname{dim} M_{2}=n-1$. Then
(i) $M_{1} \sim_{1} M_{2}$ at the end $\Leftrightarrow\left\langle\operatorname{syz}^{i}\left(M_{1}\right)\right\rangle=\left\langle\operatorname{syz}^{i}\left(M_{2}\right)\right\rangle$ for some $i>0$.
(ii) $M_{1} \sim M_{2} \Leftrightarrow\left\langle\operatorname{syz}^{i}\left(M_{1}\right)\right\rangle=\left\langle\operatorname{syz}^{i+k}\left(M_{2}\right)\right\rangle$ for some $k>0, i>0$.

Proof. (i) (\Rightarrow) From an exact sequence of the form

$$
0 \rightarrow M \rightarrow N \rightarrow \oplus_{i=1}^{\frac{1}{1}} \frac{R}{\left(x_{i}\right)} \rightarrow 0,
$$

we get by Lemma 1.6

$$
\operatorname{syz}^{1}(N) \cong \operatorname{syz}^{1}(M) \oplus R^{t}
$$

i.e. $\left\langle s y z^{1}(N)\right\rangle=\left\langle\operatorname{syz}^{1}(M)\right\rangle$. From an exact sequence of the form

$$
0 \rightarrow \oplus_{i=1}^{\dot{C}} \frac{R}{x_{i} R} \rightarrow M \rightarrow N \rightarrow 0
$$

we get $\operatorname{syz}^{2}(M) \cong \operatorname{syz}^{2}(N)$ by Lemma 1.6, i.e. $\left\langle\operatorname{syz}^{2}(M)\right\rangle \cong\left\langle\operatorname{syz}^{2}(N)\right\rangle$. We note that if $\left\langle\operatorname{syz}^{i}\left(M_{1}\right)\right\rangle=\left\langle\operatorname{syz}^{i}\left(M_{2}\right)\right\rangle$ then $\left\langle\operatorname{syz}^{i+j}\left(M_{1}\right)\right\rangle=\left\langle\operatorname{syz}^{i+j}\left(M_{2}\right)\right\rangle, j \geq 0$. Hence $M_{1} \sim_{1} M_{2}$ at the end implies $\left\langle\mathrm{syz}^{i}\left(M_{1}\right)\right\rangle=\left\langle\operatorname{syz}^{i}\left(M_{2}\right)\right\rangle$ for some $i>0$.
(i) (\approx) First let us assume $\left\langle\operatorname{syz}^{1}\left(M_{1}\right)\right\rangle=\left\langle\operatorname{syz}^{1}\left(M_{2}\right)\right\rangle$. We consider

$$
\begin{align*}
& 0 \rightarrow S_{1} \xrightarrow{f_{i}} R^{n_{1}} \rightarrow M_{1} \rightarrow 0, \tag{1'}\\
& 0 \rightarrow S_{2} \xrightarrow{f_{2}} R^{n_{2}} \rightarrow M_{2} \rightarrow 0 . \tag{2'}
\end{align*}
$$

Since (a) $S_{1} \oplus R^{t_{1}} \cong S_{2} \oplus R^{t_{2}}$; and (b) $T^{-1} S_{i}$ is a free $T^{-1} R$ module of rank $n_{i}, i=1,2$, where $T=R-\bigcup P_{i}, P_{i} \in \operatorname{Ass}(R)$; we have $n_{1}+t_{1}=n_{2}+t_{2}$. From (1^{\prime})

$$
\begin{align*}
& 0 \rightarrow S_{1} \oplus R^{t_{1}} \xrightarrow{f_{1} \oplus \mathrm{id}} R^{n_{1} \oplus} \oplus R^{t_{1}} \rightarrow M_{1} \rightarrow 0, \\
& 0 \rightarrow S_{2} \oplus R^{t_{2}} \xrightarrow{f_{2} \oplus \mathrm{id}} R^{n_{2}} \oplus R^{t_{2}} \rightarrow M_{2} \rightarrow 0 .
\end{align*}
$$

Hence (from ($1^{\prime \prime}$) and ($2^{\prime \prime}$)) without loss of generality we can write

$$
\begin{align*}
& 0 \rightarrow S \xrightarrow{f} R^{n} \rightarrow M_{1} \rightarrow 0, \tag{1}\\
& 0 \rightarrow S \xrightarrow{g} R^{n} \rightarrow M_{2} \rightarrow 0 . \tag{2}
\end{align*}
$$

Let f_{1}, \ldots, f_{n} be the components of f; let g_{1}, \ldots, g_{n} be the components of g. Since

$$
T^{-1} S \xrightarrow{T^{-1}(f)} T^{-1}\left(R^{n}\right)
$$

$T^{-1}(f)^{*}: \operatorname{Hom}\left(T^{-1} R^{n}, T^{-1} R\right) \xrightarrow{\equiv} \operatorname{Hom}\left(T^{-1} S, T^{-1} R\right)$. Thus Hom $\left(T^{-1} S, T^{-1} R\right)$ is a free $T^{-1} R$ module of rank n generated by f_{1}, \ldots, f_{n}.

Similarly $\operatorname{Hom}\left(T^{-1} S, T^{-1} R\right)$ is a free $T^{-1} R$ module of rank n generated by g_{i}, \ldots, g_{n}.

Since $\left\{f_{1}, \ldots, f_{n}\right\}$ and $\left\{g_{1}, \ldots, g_{n}\right\}$ are two sets of bases for $\operatorname{Hom}\left(T^{-1} S, T^{-1} R\right)$ as a $T^{-1} R$ module we have

$$
\left(\begin{array}{c}
g_{n} \\
\vdots \\
g_{n}
\end{array}\right)=\bar{A}\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right)
$$

where \bar{A} is an $n \times n$ matrix over $T^{-1} R$, and $\operatorname{det} \bar{A}$ is a unit in $T^{-1} R$. Choosing the denominators of the entries of \tilde{A} we have

$$
r\left(\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right)=A\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right)
$$

where entries of A are in R, r and $\operatorname{det} A$ are n.z.d.s. in R. Let

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & & & \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)
$$

Then

$$
\begin{equation*}
r g_{i}=\sum_{j=1}^{n} a_{i j} f_{j} \tag{3}
\end{equation*}
$$

For every i we denote the i-th row of A by α_{i}. We write

$$
\sum_{j=1}^{n} a_{i j} f_{j}=\alpha_{i} \cdot f, \quad f=\left(f_{1}, \ldots, f_{n}\right) .
$$

The proof will be completed by the following steps:
Step 1. From (2), since $g(s)=\left(g_{1}(s), \ldots, g_{n}(s)\right) \in R^{n}, s \in S$, we have

$$
\begin{equation*}
M_{2} \cong \frac{R^{n}}{\left(g_{1}, \ldots, g_{n}\right) S} \tag{4}
\end{equation*}
$$

Consider the map $\phi: R^{n} \rightarrow R^{n}$ given by

$$
e_{i} \mapsto r e_{i} \quad \forall i
$$

Then by repeated application of Lemma 1.3.

$$
\begin{align*}
\frac{R^{n}}{\left(g_{1}, \ldots, g_{n}\right) S} & \sim \frac{R^{n}}{\left(r g_{1}, \ldots, r g_{n}\right) S}
\end{align*} \text { at the end } .
$$

In the matrix A, by Lemmas 1.4 and 1.5 , we can assume that a_{11} is an n.z.d. Consider the map $\phi_{1}: R^{n} \rightarrow R^{n}$ given by

$$
\phi_{1}\left(e_{1}\right)=e_{1}, \quad \phi_{1}\left(e_{2}\right)=a_{11} e_{2}, \ldots, \phi_{1}\left(e_{n}\right) \rightarrow a_{11} e_{n}
$$

then by Lemma 1.3,

$$
\begin{equation*}
\frac{R^{n}}{\left(\alpha_{1} \cdot f, \ldots, \alpha_{n} \cdot f\right) S}-\frac{R^{n}}{\left(\alpha_{1} \cdot f, \alpha_{11}\left(\alpha_{2} \cdot f\right), \ldots, a_{11}\left(\alpha_{n} \cdot f\right)\right) S} \tag{6}
\end{equation*}
$$

We consider the map $\phi_{2}: R^{n} \rightarrow R^{n}$ defined by

$$
\phi_{2}\left(e_{1}\right)=e_{1}-a_{21} e_{2}-\cdots-a_{n 1} e_{n}, \quad \phi_{2}\left(e_{2}\right)=e_{2}, \ldots, \phi_{2}\left(e_{n}\right)=e_{n}
$$

Then by Lemma 1.4,

$$
\begin{equation*}
\frac{R^{n}}{\left(\alpha_{1} \cdot f, a_{11}\left(\alpha_{2} \cdot f\right), \ldots, a_{11}\left(\alpha_{n} \cdot f\right)\right) S} \underset{\rightarrow}{\left(\alpha_{1} \cdot f, \beta_{2} \cdot f^{\prime}, \beta_{3} \cdot f, \ldots, \beta_{n} \cdot f^{\prime}\right) S} \tag{7}
\end{equation*}
$$

where $f^{\prime}=\left(f_{2}, \ldots, f_{n}\right), \beta_{i}=a_{11} \alpha_{1}-a_{i 1} \alpha_{1}$, i.e., $\beta_{2}, \ldots, \beta_{n}$ are the rows of the matrix

$$
B=\left(\begin{array}{ccc}
a_{11} a_{22}-a_{12} a_{21} & \cdots & a_{11} a_{2 n}-a_{21} a_{12} \\
\vdots & & \\
a_{11} a_{n 2}-a_{n 1} a_{n 2} & \cdots & a_{11} a_{n n}-a_{n 1} a_{1 n}
\end{array}\right)
$$

Since $\operatorname{det} A$ is an n.zd. $\operatorname{det} B$ is also. We write $B=\left(b_{i j}\right), 1 \leq i \leq n-1,1 \leq j \leq n-1$. Since det B is an n.z.d. in R by Lemma 1.5, we can assume b_{11} is an n.z.d. in R. We denote the module on the right hand side of (7) by N. Now starting with B and repeating the same process a finite number of times we see that

$$
\begin{equation*}
N-\frac{R^{n}}{\left(\lambda_{i j}\right)(f) S} \text { at the end } \tag{8}
\end{equation*}
$$

where $\left(\lambda_{i j}\right)$ is an upper triangular matrix and $\operatorname{det}\left(\lambda_{i j}\right)=\lambda_{11} \cdot \lambda_{22} \cdots \lambda_{n n}$ is an n.z.d. in R.

We denote the module on the right-hand side of (8) by T. By (4)-(8), we have shown $M_{2} \sim_{1} T$ at the end.

Step 2. We have

$$
\begin{equation*}
M_{1} \cong \frac{R^{n}}{\left(f_{1}, \ldots, f_{n}\right) S} \tag{9}
\end{equation*}
$$

We consider the map $\psi_{1}: R^{n} \rightarrow R^{n}$ defined by

$$
\psi_{1}\left(e_{1}\right)=\lambda_{11} e_{1}, \quad \psi_{1}\left(e_{2}\right)=e_{2}, \ldots, \psi_{1}\left(e_{n}\right)=e_{n}
$$

Then by Lemma 1.3,

$$
\frac{R^{n}}{\left(f_{1}, \ldots, f_{n}\right) S} \sim_{1} \frac{R^{n}}{\left(\lambda_{11} f_{1}, f_{2}, \ldots, f_{n}\right) S}
$$

We apply the map $\psi_{2}: R^{n} \rightarrow R^{n}$ given by

$$
\begin{aligned}
& e_{1}-e_{1}, \\
& e_{2}-e_{2}+\lambda_{12} e_{1}, \\
& \vdots \\
& e_{n}-e_{n}+\lambda_{1 n} e_{1} .
\end{aligned}
$$

Then by Lemma 1.4,

$$
\frac{R^{n}}{\left(\lambda_{11} f_{1}, f_{2}, \ldots, f_{n}\right) S} \leadsto \frac{R^{n}}{\left(\lambda_{11} f_{1}+\cdots+\lambda_{1 n} f_{n}, f_{2}, \ldots, f_{n}\right) S} \text { at the end. (10) }
$$

Now repeating the above process a finite number of times we see

$$
M_{1} \sim_{1} \frac{R^{n}}{\left(\lambda_{11} f_{1}+\cdots+\lambda_{1 n} f_{n}, \lambda_{22} f_{2}+\cdots+\lambda_{2 n} f_{n}, \ldots, \lambda_{n n} f_{n}\right) S} \text { at the end }
$$

Hence from Step 1 and Step 2, $M_{1} \sim_{1} M_{2}$ at the end.
Now suppose $\left\langle\operatorname{syz}^{i}\left(M_{1}\right)\right\rangle=\left\langle\operatorname{syz}^{i}\left(M_{2}\right)\right\rangle$ for $i>1$. By applying arguments similar to those applied at the beginning of the proof, we can write

$$
\begin{align*}
& 0 \rightarrow S \rightarrow R^{n_{i}-1} \rightarrow \cdots \rightarrow R^{n_{1}} \xrightarrow{\alpha} R^{n_{0} \rightarrow M_{1} \rightarrow 0}, \tag{11}\\
& 0 \rightarrow S \rightarrow R^{m_{i-1}} \rightarrow \cdots \rightarrow R^{m_{1}} \xrightarrow{\beta} R^{m_{0}} \rightarrow M_{2} \rightarrow 0 . \tag{12}
\end{align*}
$$

Let $S_{1}=\operatorname{Im} \alpha, S_{2}=\operatorname{Im} \beta$. Then we have

$$
\begin{align*}
& 0 \rightarrow S \rightarrow R^{n_{i-1}} \rightarrow \cdots \rightarrow R^{n_{1} \rightarrow S_{1} \rightarrow 0} \tag{13}\\
& 0 \rightarrow S \rightarrow R^{m_{i-1}} \rightarrow \cdots \rightarrow R^{m_{1}} \rightarrow S_{2} \rightarrow 0 \tag{14}
\end{align*}
$$

Applying $\operatorname{Hom}(, R)={ }^{v}$ we get

$$
\begin{align*}
& 0 \rightarrow S_{1}^{U} \rightarrow R_{1}^{n_{1}^{v}} \rightarrow \cdots \rightarrow R^{n_{i-1}^{v}} \rightarrow S^{\nu} \rightarrow 0 \\
& 0 \rightarrow S_{2}^{\nu} \rightarrow R^{m_{1}^{v} \rightarrow \cdots \rightarrow R_{i-1}^{m_{i}^{v}} \rightarrow S^{v} \rightarrow 0 .} \tag{14'}
\end{align*}
$$

Since $\left(R^{t}\right)^{u} \cong R^{t}$, from (13^{\prime}) and (14^{\prime}) we get the following homomorphism:

$$
\begin{equation*}
S_{1}^{u} \oplus R^{p} \cong S_{2}^{u} \oplus R^{q} . \tag{15}
\end{equation*}
$$

Since M_{1}, M_{2} are $C-M$ modules with $\operatorname{dim} M_{1}=\operatorname{dim} M_{2}=n-1, S_{1}$ and S_{2} are $C-M$ modules and $\operatorname{dim} S_{1}=\operatorname{dim} S_{2}=n, S_{1}$ and S_{2} are reflexive, i.e. $S_{1} \cong S_{1}^{\nu \nu}, S_{2} \cong S_{2}^{\nu \nu}$. Applying $\operatorname{Hom}(, R)$ in (15), $S_{1}^{\nu \nu} \oplus R^{0^{0}} \cong S_{2}^{\nu \nu} \oplus R^{q^{\prime \prime}}$. Thus $S_{1} \oplus R^{o} \cong S_{2} \oplus R^{u}$, i.e. $\left\langle S_{1}\right\rangle=\left\langle S_{2}\right\rangle$, i.e. $\left\langle\operatorname{syz}^{1}\left(M_{1}\right)\right\rangle=\left\langle\operatorname{syz}^{1}\left(M_{2}\right)\right\rangle$ and hence by the first part $M_{1}-1 M_{2}$ at the end.

Remark. We note that throughout the proof the linking was always actually on the right.
(ii) \Rightarrow) Suppose $M_{1} \sim_{1} M_{2}$. We consider the following exact sequence:

$$
0 \rightarrow M \rightarrow \sum_{i=1}^{i} \frac{R}{x_{i} R} \rightarrow N \rightarrow 0, \quad x \text { an n.z.d. in } R .
$$

Then by Lemma 1.6, we have $\left\langle\operatorname{syz}^{1}(M)\right\rangle \cong\left\langle\operatorname{syz}^{2}(N)\right\rangle$. When $M_{1} \sim_{1} M_{2}$, since only a finite number of such exact sequences and a finite number of exact sequences as described in (i) occur, we have from the (\Rightarrow) part in (i) and from the above, $\left\langle\operatorname{syz}^{i}\left(M_{1}\right)\right\rangle=\left\langle\operatorname{syz}^{i+k}\left(M_{2}\right)\right\rangle$ for some $k>0, i>0$.
(ii) (\Leftrightarrow) Suppose $\left\langle\operatorname{syz}^{i}\left(M_{1}\right)\right\rangle=\left\langle\operatorname{syz}^{i+k}\left(M_{2}\right)\right\rangle$. Since $\operatorname{dim} M_{2}=n-1$, and R is $C-M$ we have depth $\mathrm{Ann}_{R} M_{2}=1$. Let $x \in \mathrm{Ann}_{R} M_{2}$ be an n.z.d. We map direct sums of $R / x R$ onto M_{2}. If we do this once we get $0 \rightarrow M_{2}^{(1)} \rightarrow E \rightarrow M_{2} \rightarrow 0$ and $\left\langle\right.$ syz $\left.^{j} M_{2}\right\rangle=$ $\left\langle\right.$ syz $\left.^{j-1} M_{2}^{(1)}\right\rangle$, for large j. After k steps we get $M_{2}^{(k)}{ }_{-1} M_{2}$ and

$$
\begin{aligned}
\left\langle\operatorname{syz}^{r+k}\left(M_{2}\right)\right\rangle & =\left\langle\operatorname{syz}^{r}\left(M_{1}^{(k)}\right)\right\rangle \text { for large } r \\
& =\left\langle\operatorname{syz}^{r}\left(M_{1}\right)\right\rangle \text { for large } r .
\end{aligned}
$$

So $M_{1} \sim_{1} M_{2}^{(k)}$ at the end by (i). Hence $M_{2} \sim_{1} M_{1}$ and we are done.
1.10. Corollary. Suppose R Gorenstein, $\operatorname{dim} R=d=\operatorname{dim} N$, and N is $C-M$. Let

$$
\begin{align*}
& 0 \rightarrow N \xrightarrow{f} R^{n} \rightarrow T_{1} \rightarrow 0, \tag{16}\\
& 0 \rightarrow N \xrightarrow{g} R^{n} \rightarrow T_{2} \rightarrow 0, \tag{17}
\end{align*}
$$

be given, where T_{1} and T_{2} are such that $S^{-1} T_{1}$ and $S^{-1} T_{2}$ are free $S^{-1} R$ modules where $S=R-\bigcup P_{i}, P_{i} \in \operatorname{Ass}(R)$. Then $T_{1} \sim_{1} T_{2}$ on the right.

Proof. Let K be the total quotient ring of R. We apply $\otimes K$, and we get an exact
sequence

$$
\begin{equation*}
0 \rightarrow N \otimes_{R} K \rightarrow K^{n} \rightarrow T_{1} \otimes_{R} K \rightarrow 0 \tag{18}
\end{equation*}
$$

Let $\operatorname{rank}\left(N \otimes_{R} K\right)=s$. Applying $\operatorname{Hom}(, K)=$ * we get from (18) an exact sequence

$$
\begin{equation*}
0 \rightarrow\left(T_{1} \otimes_{R} K\right)^{*} \rightarrow\left(K^{n}\right)^{*} \rightarrow\left(N \otimes_{R} K\right)^{*} \rightarrow 0 \tag{19}
\end{equation*}
$$

Let f_{1}, \ldots, f_{n} be the components of f. Then (19) shows that f_{1}, \ldots, f_{n} generate $\left(N \bigotimes_{R} K\right)^{*}$. Let f_{1}, \ldots, f_{s} be a free basis of $\left(N \bigotimes_{R} K\right)^{*}$. Hence $x \in R-\{0\}$ such that

$$
x f_{j}=\sum_{k=1}^{5} a_{j k} f_{k}, \quad j=s+1, \ldots, n
$$

We apply $\phi: R^{n} \rightarrow R^{n}$ defined by

$$
\begin{array}{ll}
e_{i} \mapsto e_{i}, & i=1, \ldots, s \\
e_{j} \mapsto x e_{j}, & j=s+1, \ldots, n
\end{array}
$$

Then by Lemma 1.3,

$$
\begin{aligned}
T_{1} & =\frac{R^{n}}{\left(f_{1}, \ldots, f_{n}\right) N} \\
& \sim_{1} \frac{R^{n}}{\left(f_{1}, \ldots, f_{s}, x f_{s+1}, \ldots, x f_{n}\right) N} \\
& =\frac{R^{n}}{\left(f_{1}, \ldots, f_{s}, \sum_{k=1}^{s} a_{s+1, k} f_{k}, \ldots, \sum_{k=1}^{s} a_{n k} f_{k}\right) N} .
\end{aligned}
$$

Now we apply $\psi: R^{n} \rightarrow R^{n}$ given by

$$
\begin{aligned}
& e_{1} \mapsto e_{1}-a_{s+1,1} e_{s+1}, \\
& e_{2} \mapsto e_{2}-a_{s+1,2} e_{s+1}, \\
& e_{s}-e_{s}-a_{s+1, s} e_{s+1}, \\
& e_{s+1}-e_{s+1}, \\
& \vdots \\
& e_{n} \mapsto e_{n} .
\end{aligned}
$$

Then by Lemma 1.4, we get

$$
\begin{gathered}
\frac{R^{n}}{\left(f_{1}, \ldots, f_{s}, \sum_{k=1}^{s} a_{s+1, k} f_{k}, \ldots, \sum_{k=1}^{s} a_{n k} f_{k}\right) N} \\
\xrightarrow{\longrightarrow} \frac{R^{n}}{\left(f_{1}, \ldots, f_{2}, 0, \sum_{k=1}^{s} a_{s+2 k} f_{k}, \ldots\right) N}
\end{gathered}
$$

Repeating the above operation a finite number of times we get

$$
\begin{align*}
T_{1} & \sim \frac{R^{n}}{\left(f_{1}, \ldots, f_{s}, 0, \ldots, 0\right) N}=T_{1}^{\prime}, \text { say } \\
\simeq & \frac{R^{s}}{\left(f_{1}, \ldots, f_{s}\right) N} \oplus R^{n-s}=L_{1} \oplus R^{n-s} . \tag{20}
\end{align*}
$$

So we have

$$
\begin{equation*}
0 \rightarrow N \rightarrow R^{s} \rightarrow L_{1} \rightarrow 0 \tag{21}
\end{equation*}
$$

Similarly from $0 \rightarrow N \rightarrow R \rightarrow T_{2}^{\prime} \rightarrow 0$ we get

$$
\begin{aligned}
& T_{2}-1 R^{n} \\
&=\frac{R^{s}}{\left(g_{1}, \ldots, g_{s}, 0, \ldots, 0\right) N}=T_{2}^{\prime}, \text { say } \\
&\left.g_{1}, \ldots, g_{s}\right) N \\
& R^{n-s}=L_{2} \oplus R^{n-s}
\end{aligned}
$$

and we have

$$
\begin{equation*}
0 \rightarrow N \rightarrow R^{s} \rightarrow L_{2} \rightarrow 0 \tag{22}
\end{equation*}
$$

We notice L_{1}, L_{2} are $C-M$ modules with $\operatorname{dim} L_{i}=\operatorname{dim} r-1, i=1,2$. Hence by the theorem $L_{1} \sim_{1} L_{2}$ on the right and $L_{1} \oplus R^{n-s} \sim_{1} L_{2} \oplus R^{n-s}$ on the right. Hence $T_{1} \sim T_{2}$ on the right.
1.11. Corollary. Assume R Gorenstein, $\operatorname{dim} R=n$. Suppose that

is exact. Then $M_{1} \sim_{1} M_{2}$ at the end. Here M_{1}, M_{2} are $C-M$ modules with $\operatorname{dim} M_{1}=\operatorname{dim} M_{2}=\operatorname{dim} R-1$.

Proof. From the above diagram, we construct T, where T is given by

$$
\begin{equation*}
0 \rightarrow N_{1} \xrightarrow{\psi \cdot \phi} R^{n} \rightarrow T \rightarrow 0 . \tag{23}
\end{equation*}
$$

Hence we have from the diagram

$$
\begin{equation*}
0 \rightarrow \oplus \frac{R}{\left(\lambda_{i}\right)} \rightarrow T \rightarrow M_{2} \rightarrow 0 . \tag{24}
\end{equation*}
$$

Thus $T \sim_{1} M_{2}$ at the end. We consider (23) with

$$
\begin{equation*}
0 \rightarrow N_{1} \rightarrow R^{n} \rightarrow M_{1} 0 \tag{25}
\end{equation*}
$$

By the theorem $T \sim_{1} M_{1}$ at the end. Hence $M_{1} \sim M_{2}$ at the end.
1.12. Corollary. On a Gorenstein ring of dimension 1, any module of finite length and finite projective dimension is linked to $R /(x)$ for any n.z.d. $x \in R$.

Proof. Since (i) M is of finite length, $\operatorname{depth} M=0$; (ii) $\operatorname{dim} R=1=\operatorname{depth} R$; (iii) Proj $\operatorname{dim} M+\operatorname{depth} M=\operatorname{depth} R$;
we have Proj $\operatorname{dim} M=1$.
Let x be any n.z.d. of R. Then we get

$$
0 \rightarrow R \rightarrow R \rightarrow \frac{R}{(x)} \rightarrow 0
$$

a projective resolution for $R(x)$. Since $\left\langle\operatorname{syz}^{1}(R /(x))\right\rangle=\left\langle\operatorname{syz}^{1}(M)\right\rangle$, by the theorem, $M \sim 1 R /(x)$ at the end.
1.13. Corollary. Assume R Gorenstein, $\operatorname{dim} R=n$. Suppose we have

$$
\begin{align*}
& 0 \rightarrow R^{n} \xrightarrow{\phi} N \rightarrow T_{1} \rightarrow 0, \tag{26}\\
& 0 \rightarrow R^{n} \xrightarrow{\psi} N \rightarrow T_{2} \rightarrow 0, \tag{27}
\end{align*}
$$

where T_{1}, T_{2} are $C-M$ modules with $\operatorname{dim} T_{i}=\operatorname{dim} R-1$, for $i=1,2$. Then $T_{1} \sim T_{2}$ at the end.

Proof. Since $T_{i}(i=1,2)$, are $\mathrm{C}-\mathrm{M}$ and $\operatorname{dim} T_{i}=n-1, \operatorname{Ext}^{1}\left(T_{i}, R\right)=T_{i}{ }^{\nu}(i=1,2)$ are also $\mathrm{C}-\mathrm{M}$, $\operatorname{dim} T_{i}^{\nu}=n-1$ and $\left(T_{i}^{\nu}\right)^{\nu} \cong T_{i}$. From (26) and (27) we have, by applying $\operatorname{Hom}(, R)=*$,

$$
\begin{aligned}
& 0 \rightarrow N^{*} \rightarrow R^{n} \rightarrow T_{1}^{v} \rightarrow 0 \\
& 0 \rightarrow N^{*} \rightarrow R^{n} \rightarrow T_{2}^{v} \rightarrow 0 .
\end{aligned}
$$

Hence by the theorem $T_{1}^{v} \sim_{1} T_{2}^{\nu}$ at the end. But since any exact sequence $0 \rightarrow L_{1} \rightarrow$ $L_{2} \rightarrow R /(x) \rightarrow 0$ with $L_{1}, L_{2} \mathrm{C}-\mathrm{M}$, $\operatorname{dim} L_{i}=n-1$, and x an n.z.d., gives rise to an exact sequence (by applying *) $0 \rightarrow R /(x) \rightarrow L_{2}^{U} \rightarrow L_{1}^{U} \rightarrow 0$, we have $T_{1}^{u} \sim_{1} T_{2}^{u} \Leftrightarrow T_{1}-1 T_{2}$ at the end. Hence the result follows.
1.14. Corollary. Let R be a reduced Gorenstein ring of dimension 1 , such that every ideal in R can be generated by 2 elements. Let \bar{R} be the integral closure of R in its full ring of quotients be a finitely generated R-module. Then any module M of finite length on R is weakly linked to $\oplus_{i=1}^{k} R / I_{i}$ where the I_{i} 's are ideals of R with ht $I_{i}>0$ for all i. In particular on $R=K\left[\left[x^{2}, x^{2 n+1}\right]\right]$ every module of finite length $M \sim \oplus_{i=1}^{i} R / I_{i}$, where $I_{i}=\left(x^{2 i}, x^{2 n+1}\right), 1 \leq i \leq n$ or I_{i} is principal.

Proof. We consider the following exact sequence

$$
\begin{equation*}
0 \rightarrow S \rightarrow R^{n} \rightarrow M \rightarrow 0 \tag{28}
\end{equation*}
$$

Since S is torsionless on a one-dimensional reduced Gorenstein ring R such that \bar{R} is a finite type module over $R, S \cong \oplus_{\text {finite }} I_{i}$ where the I_{i} 's are ideals of $R([1], 2,7)$. Hence we have

$$
\begin{equation*}
0 \rightarrow S \rightarrow R^{t} \rightarrow \oplus_{i=1}^{i} \frac{R}{I_{i}} \rightarrow 0 \tag{29}
\end{equation*}
$$

From (28) and (29) by the theorem $M \sim, \oplus R / I_{i}$. In $R=K\left[\left[x^{2}, x^{2 n+1}\right]\right]$ since $m=\left(x^{2}, x^{2 n+1}\right)$ is generated by two elements and R is a domain, R is Gorenstein ($[2], 2,6.4$). Since the multiplicity of R with respect to m is 2 , every ideal can be generated by 2 elements ([6], 12.8).

Now we use the following lemma. For a proof one is referred to [2], 1, Lemma 1.8.

Lemma. Let R be a noetherian local integral domain with maximal ideal m and integral closure \bar{R}, and assume every non-zero ideal of R can be generated by 2 elements. Then
(i) $R_{1}=m^{-1}$ is a proper finite integral over the ring of R.
(ii) Every non-principal ideal I is an R_{1}-module, i.e. $R_{1} I=I$.
(iii) If S is a proper finite integral over the ring of R then $R_{1} \subseteq S$ and every ideal of S is generated by at most 2 elements.

Since in our case $R=K[[x]]$ is a finite module over R, we have the following unique chain of integral extensions from R to \bar{R} :

$$
K[[x]] \supset K\left[\left[x^{2}, x^{3}\right]\right] \supset K\left[\left[x^{2}, x^{5}\right]\right] \supset \cdots \supset K\left[\left[x^{2}, x^{2 n-1}\right]\right] \supset R .
$$

By the lemma any finite integral extension of R contained in \bar{R} must be one of those described above, since $\left(x^{2}, x^{2 k+1}\right)^{-1}=K\left[\left[x^{2}, x^{2 k-1}\right]\right]$.

Claim. Any non-principal ideal I of R is isomorphic to $\left(x^{2 i}, x^{2 n-1}\right)$ for some i.
Proof. Any non-principal ideal I by the above lemma becomes a module generated by a single element at a certain stage, say at the i-th stage, i.e. over $K\left[\left[x^{2}, x^{2 n+1-2 i}\right]\right]=$
R_{i}. Since over R_{i}, I is isomorphic to $I_{i}=\left(x^{2 i}, x^{2 n+1}\right)$, which is also principal over R_{i}, they are isomorphic over R.

Thus by the first part of the corollary the required result follows.

2. Multiplicities

2.1. Proposition. Let R be a $C-M$ ring of dimension n. Let M_{1}, M_{2} be two $C-M$ modules of dimension r. Then $M_{1} \Rightarrow M_{2} \propto\left\langle\operatorname{syz}^{i}\left(M_{1}\right)\right\rangle \cong\left\langle\operatorname{syz}^{i}\left(M_{2}\right)\right\rangle$ for some $i, \mathrm{l} \leq i<n-r$.

Proof. (\Rightarrow) Obvious.
(\Leftrightarrow) We first show that $M \rightrightarrows N \Leftrightarrow \hat{M} \cong \hat{N}$ where \hat{M} is the completion of M with respect to the maximal ideal m of $R . M \approx N \Rightarrow \hat{M} \approx \hat{N}$. Let $\hat{M} \stackrel{\Phi}{=} \hat{N}$. Then $\phi \in \operatorname{Hom}_{\hat{R}}(\hat{M}, \hat{N})=\operatorname{Hom}_{R}(M, N)^{-}$. Hence there is a $\phi_{0} \in \operatorname{Hom}_{R}(M, N)$ such that $\phi-\phi \in m \operatorname{Hom}_{R}(M, N)^{-}$. Therefore

$$
\frac{R}{m} \otimes_{R} \frac{N}{\phi_{0}(M)}=\frac{N}{\phi_{0}(M)+m N}=0
$$

because ϕ and ϕ_{0} induce the same map once tensored with R / m. Thus, by Nakayama's Lemma, $N=\phi_{0}(M)$, i.e. we can map M onto N and similariy we can map N onto M. But for finitely generated modules over commutative rings this implies $M \simeq N$. Thus we are reduced to showing: If R is complete $\mathrm{C}-\mathrm{M}$ of dimension n, and M_{1} and M_{2} are two $\mathrm{C}-\mathrm{M}$ modules of dimension r such that $\left\langle\operatorname{syz}^{i}\left(M_{1}\right)\right\rangle=$ $\left\langle\operatorname{syz}^{i}\left(M_{2}\right)\right\rangle$, then $M_{2} \simeq M_{2}$. We consider the following resolution of M_{1} :

$$
\begin{equation*}
0 \rightarrow S_{i} \rightarrow R^{n_{i-1}} \rightarrow \cdots \rightarrow R^{n_{1}} \rightarrow R^{n_{0}} \rightarrow M_{1} \rightarrow 0 \tag{30}
\end{equation*}
$$

Let $S_{k}=\operatorname{syz}^{k}\left(M_{1}\right)$ given by (30). Since R is complete it has a canonical module Ω. We consider

$$
\begin{equation*}
0 \rightarrow S_{1} \rightarrow R^{n_{0}} \rightarrow M_{1} \rightarrow 0 \tag{31}
\end{equation*}
$$

Since M_{1} is $C-M$ with $\operatorname{dim} M_{1}=r$, and $\operatorname{dim} R=n$,

$$
\begin{aligned}
\operatorname{Ext}^{j}\left(M_{1}, \Omega\right) & =0 & & \text { for } j \neq n-r \\
& \neq 0 & & \text { for } j=n-r
\end{aligned}
$$

In (31), we apply $\operatorname{Hom}(, \Omega)$, then from the long exact sequence of Ext, we get

$$
\begin{equation*}
0 \rightarrow \operatorname{Ext}^{n-r-1}\left(S_{1}, \Omega\right) \rightarrow \operatorname{Ext}^{n-r}\left(M_{1}, \Omega\right) \rightarrow 0 \tag{32}
\end{equation*}
$$

Now considering

$$
\begin{aligned}
& 0 \rightarrow S_{2} \rightarrow R^{n_{1}} \rightarrow S_{1} \rightarrow 0, \\
& \cdots \cdots \\
& 0 \rightarrow S_{k} \rightarrow R^{n_{k-1}} \rightarrow S_{k-1} \rightarrow 0, \\
& 0 \rightarrow S_{i} \rightarrow R^{n_{i-1}} \rightarrow S_{i-1} \rightarrow 0,
\end{aligned}
$$

and applying $\operatorname{Hom}(, \Omega)$, writing the long exact sequence of Ext (as we have done above) we get

$$
\begin{aligned}
\operatorname{Ext}^{n-r}\left(M_{1}, \Omega\right) & =\operatorname{Ext}^{n-r-1}\left(S_{1}, \Omega\right)=\operatorname{Ext}^{n-r-2}\left(S_{2}, \Omega\right) \\
& \simeq \cdots \simeq \operatorname{Ext}^{n-r-i}\left(S_{i}, \Omega\right)
\end{aligned}
$$

Similarly $\operatorname{Ext}^{n-r}\left(M_{2}, \Omega\right)=\operatorname{Ext}^{n-r-i}\left(T_{i}, \Omega\right)$, where

$$
0 \rightarrow T_{i} \rightarrow R^{t_{i-1}} \rightarrow \cdots \rightarrow R^{t_{0}} \rightarrow M_{2} \rightarrow 0
$$

is a projective resolution of M_{2}. Since $\left\langle S_{i}\right\rangle=\left\langle T_{i}\right\rangle$, $\operatorname{Ext}^{n-r-i}\left(S_{i}, \Omega\right) \approx \operatorname{Ext}^{n-r-i}\left(T_{i}, \Omega\right)$. Hence $\operatorname{Ext}^{n-r}\left(M_{1}, \Omega\right)=\operatorname{Ext}^{n-r}\left(M_{2}, \Omega\right)$. Since for a $\mathrm{C}-\mathrm{M}$ module M of dimension r, $\operatorname{Ext}^{n-r}\left(\mathrm{Ext}^{n-r}(M, \Omega), \Omega\right)=M$, we have from the above $M_{1}=M_{2}$.
2.2. The above proposition shows that for any M_{1}, M_{2} of finite length on Gorenstein ring R of dimension $n, M_{1} \simeq M_{2} \Leftrightarrow\left\langle\operatorname{syz}^{i}\left(M_{1}\right)\right\rangle=\left\langle\operatorname{syz}^{i}\left(M_{2}\right)\right\rangle$ for some $i<n$. This naturally gives rise to the following question: What relation exists between $M_{1}, M I_{2}$ when $\left\langle\operatorname{syz}^{n}\left(M_{1}\right)\right\rangle=\left\langle\operatorname{syz}^{n}\left(M_{2}\right)\right\rangle$. We have seen by Theorem 1.9 that when $n=1$, $M_{1} \sim_{1} M_{2}$ at the end. Is this true in higher dimensions also? M. Hochster has the following conjecture which we denote by HC:

HC. On a Gorenstein ring R of dimension n, if M_{1}, M_{2} have finite length and $\left\langle\operatorname{syz}^{n}\left(M_{1}\right)\right\rangle=\left\langle\operatorname{syz}^{n}\left(M_{2}\right)\right\rangle$ then $M_{1} \sim_{n} M_{2}$ at the end.
2.3. Proposition. Suppose HC holds on Gorenstein rings. Then R satisfies the vanishing conjecture.

Proof. We first prove the following two lemmas.
2.4. Lemma. Let R be Gorenstein of dimension n. For any two modules M, N with

$$
\operatorname{pd} M<\infty, \quad l\left(M \otimes_{R} N\right)<\infty, \quad \operatorname{dim} M+\operatorname{dim} N<\operatorname{dim} R
$$

$\chi(M, N)=0$ if and only if for any perfect module M and $C-M$ module N such that

$$
l\left(M \otimes_{R} N\right)<\infty, \quad \operatorname{dim} M+\operatorname{dim} N=n-1,
$$

$\chi(M, N)=0$.
Proof. (\Rightarrow) Obvious.
(ϵ) This follows by the the following three claims.
2.5. Claim. Let M and N be two modules over a $C-M$ ring such that $l\left(M \otimes_{R} N\right)>\infty$ and $\operatorname{dim} M+\operatorname{dim} N<\operatorname{dim} R$. Then we can choose a system of parameters $\left\{x_{1}, \ldots, x_{r}\right\}$ for M contained in $\operatorname{Ann}_{R} N$ such that $\left\{x_{1}, \ldots, x_{r}\right\}$ is an R-sequence, where $r=\operatorname{dim} M$.

Proof. Let $\left\{P_{1}, \ldots, P_{s}\right\}=\operatorname{Ass}(R)$ and $\left\{q_{1}, \ldots, q_{t}\right\}$ be minimal primes of $\operatorname{Ass}(M)$. Let $I_{N}=\mathrm{Ann}_{R} N, I_{M}=\mathrm{Ann}_{R} M$. Then since $l\left(M \otimes_{R} N\right)<\infty$ and $\operatorname{dim} M+\operatorname{dim} N \leq \operatorname{dim} R$, we can pick

$$
x_{1} \in I_{N}-\bigcup_{i=1}^{\prime} P_{i}-\bigcup_{j=1}^{\prime} q_{j},
$$

noting that since $I_{S}+I_{M}$ is m-primary, where m is the maximal ideal of R,

$$
I_{N} \subset\left(\bigcup_{i=1}^{r} P_{i}\right) \cup\left(\bigcup_{i=1}^{t} q_{i}\right)
$$

Then x_{1} is an n.z.d. on R and

$$
\operatorname{dim} \frac{M}{x_{1} M}=\operatorname{dim} M-1, \quad \operatorname{dim} \frac{R}{x_{1} R}=\operatorname{dim} R-1
$$

Since $M \otimes_{R} N=M / x_{1} M \otimes_{R x_{1} R} N$ we start with $M / x_{1} M$ over $R / x_{1} R$ and continue the same process. After a finite number of times we get the required result.

Let $\operatorname{dim} M=r, \operatorname{dim} N=s, I_{M}=\operatorname{Ann}_{R} M, I_{N}=\operatorname{Ann}_{R} N$. Then $\operatorname{dim} M+\operatorname{dim} R / I_{N}<n$ and hence $\operatorname{dim} M+\operatorname{dim} R-\mathrm{ht} I_{N}<n$, i.e.

$$
\begin{equation*}
\text { ht } I_{N}>\operatorname{dim} M \tag{33}
\end{equation*}
$$

2.6. Claim. Suppose we have $\operatorname{pd}_{R} M<\infty, l(M \otimes N)<\infty$ and $\operatorname{dim} M+\operatorname{dim} N<$ $\operatorname{dim} R$. In order to prove $\chi(M, N)=0$ we can take N to be $C-M$.

Proof. We choose $\left\{x_{1}, \ldots, x_{r}\right\}$ a system of parameters for M such that $x_{i} \in I_{N}$, $i=1, \ldots, r$, and $\left\{x_{1}, \ldots, x_{r}\right\}$ is an R-sequence. We extend it to $\left\{x_{1}, \ldots, x_{r}, x_{r+1}, \ldots, x_{h}\right\}$, a maximal R-sequence contained in I_{N} where $h=$ ht $I_{N}=\operatorname{depth} I_{N}$.

We know by [5], Th. 1, that

$$
\begin{equation*}
\chi\left(\frac{R}{\left(x_{1}, \ldots, x_{r}, \ldots, x_{k}\right)}, M\right)=0 \tag{34}
\end{equation*}
$$

for $r<k \leq h$. Suppose depth $N=t<n-h$. We map a finite direct sum of $R /\left(x_{1}, \ldots, x_{h}\right)$ onto N; then the kernel N_{1} of this map is such that depth $N_{1}=$ depth $N+1$. Repeating this process for a finite number of times we get a module N_{n-h} which is C-M of dimension $n-h$ and such that $\chi(M, N)=0 \Leftrightarrow \chi\left(M, N_{n-h}\right)=0$ (by (34)). Thus the claim is proved.

Remark. By applying similar arguments we can take M to be perfect.
2.7. Claim. Under the same hypothesis as in 2.6 we can take N to be $C-M$ with $\operatorname{dim} N=n-r-1$.

Proof. We have shown in Claim 2.6. that we can take N to be $\mathrm{C}-\mathrm{M}$ and $\operatorname{dim} N=$
$s<n-r-1$. We consider the following exact sequences:

$$
\begin{aligned}
& 0 \rightarrow N_{1} \rightarrow\left(\frac{R}{\left(x_{1}, \ldots, x_{h-1}\right)}\right)^{p_{1}} \rightarrow N \rightarrow 0, \\
& 0 \rightarrow N_{2} \rightarrow\left(\frac{R}{\left(x_{1}, \ldots, x_{h-2}\right)}\right)^{p_{2}} \rightarrow N_{1} \rightarrow 0, \\
& \cdots \cdots \\
& 0 \rightarrow N_{t} \rightarrow\left(\frac{R}{\left(x_{1}, \ldots, x_{h-t}\right)}\right)^{p_{t}} \rightarrow N_{t-1} \rightarrow 0,
\end{aligned}
$$

where $t=n-r-1-s$. We note each N_{i} is $\mathrm{C}-\mathrm{M}, \operatorname{dim} N_{i}=\operatorname{dim} N_{i-1}+1, h-t=r+1$, and $\chi\left(M, N_{i-1}\right)=-\chi\left(M, N_{i}\right)$. Thus we have constructed a C-M module $N_{t}=T$ say of dimension $n-r-1$ such that $\chi(M, N)=0 \Leftrightarrow \chi(M, T)=0$. Thus our claim is established; moreover, we have $\operatorname{dim} M+\operatorname{dim} T=r+n-r-1=n-1$.

In the course of proving the three claims we have shown that if M perfect, N $\mathrm{C}-\mathrm{M}, l(M \otimes N)<\infty$ and $\operatorname{dim} M+\operatorname{dim} N=\operatorname{dim} R-1$ imply $\chi(M, N)=0$, then the vanishing conjecture holds over R.
2.8. Lemma. Let R be a Gorenstein ring of dimension n. Let M be perfect and N be $C-M$ such that $l\left(M \otimes_{R} N\right)<\infty, \operatorname{dim} M+\operatorname{dim} N=n-1$. Then if HC holds, $\chi(M, N)=0$.

Proof. We have seen ht $I_{N}=r+1$, where $r=\operatorname{dim} M$. Let $\left\{x_{1}, \ldots, x_{r}\right\}$ be an M-sequence contained in I_{N} such that it is also an R-sequence. Let

$$
\begin{equation*}
0 \rightarrow R^{n_{r}} \rightarrow \cdots \rightarrow R^{n_{0}} \rightarrow M \rightarrow 0 \tag{35}
\end{equation*}
$$

be a minimal projective resolution of M. Since $\left\{x_{1}, \ldots, x_{r}\right\}$ is an M-sequence,

$$
\operatorname{Tor}_{i}^{R}\left(M, \frac{R}{\left(x_{1}, \ldots, x_{r}\right)}\right)=0
$$

therefore applying $\otimes\left(R /\left(x_{1}, \ldots, x_{r}\right)\right)$ to (35) we get the following exact sequence:

$$
\begin{equation*}
0 \rightarrow\left(\frac{R}{\left(x_{1}, \ldots, x_{r}\right)}\right)^{n_{r}} \rightarrow \cdots \rightarrow\left(\frac{R}{\left(x_{1}, \ldots, x_{r}\right)}\right)^{n_{0}} \rightarrow \frac{M}{\left(x_{1}, \ldots, x_{r}\right) M} \rightarrow 0 . \tag{36}
\end{equation*}
$$

Hence $\operatorname{pd}_{R /\left(x_{1}, \ldots, x_{r}\right)}\left(M /\left(x_{1}, \ldots, x_{r}\right) M\right)<\infty$.
Since $\left(A \otimes_{R} B\right) \otimes_{R} C=A \otimes_{R}\left(B \otimes_{R} C\right)$ as A, B, C are R-modules, we have

$$
\operatorname{Tor}_{i}^{R}(M, N) \simeq \operatorname{Tor}_{i}^{R /\left(x_{1}, \ldots, x_{r}\right)}\left(\frac{M}{\left(x_{1}, \ldots, x_{r}\right) M}, N\right) .
$$

Let

$$
S=\frac{R}{\left(x_{1}, \ldots, x_{r}\right)}, \quad Q=\frac{M}{\left(x_{1}, \ldots, x_{r}\right) M} .
$$

Then $\chi^{R}(M, N)=\chi^{S}(Q, N)$ where Q is a module of finite length and finite projective dimension over S.

Hence we are led to prove the following sublemma.
2.9. Sublemma. Let R be a Gorenstein ring of dimension n. Let M, N be $C-N$ modules such that $l(M)<\infty, \operatorname{pd}_{R}(M)<\infty, \operatorname{dim} N=n-1$. Then $\chi(M, N)=0$ provided HC holds on Gorenstein rings.

Proof. Suppose HC holds on Gorenstein rings. Since M is a module of finite length and finite projective dimension, $\operatorname{syz}^{n}(M)$ is free. Again we know (via the Koszul complex) that $\operatorname{syz}^{n}\left(R /\left(x_{1}, \ldots, x_{n}\right)\right)$ is also free, where $\left\{x_{1}, \ldots, x_{n}\right\}$ is an R-sequence. Hence by HC, $M \sim_{n} R /\left(x_{1}, \ldots, x_{n}\right)$. We note $\operatorname{dim} N=n-1$. Now whenever we have

$$
0 \rightarrow M \rightarrow T \rightarrow \oplus_{i} \frac{R}{\left(y_{i 1}, \ldots, y_{i n}\right)} \rightarrow 0
$$

the sum being finite, and $\left\{y_{i 1}, \ldots, y_{i n}\right\}$ an R-sequence, we get

$$
\chi(T, N)=\chi(M, N)+\chi\left(\oplus_{i} \frac{R}{\left(y_{i 1}, \ldots, y_{i n}\right)}, N\right) .
$$

But by [5], Th. 1,

$$
\chi\left(\oplus_{i} \frac{R}{\left(y_{i 1}, \ldots, y_{i n}\right)}, N\right)=0 .
$$

Hence $\chi(M, N)=\chi(T, N)$. The same argument shows $\chi(M, N)= \pm \chi(M, N)$ for all kinds of linking. Thus when $M \sim_{n} R /\left(x_{1}, \ldots, x_{n}\right)$ we have

$$
\chi(M, N)= \pm \chi\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}, N\right)=0 .
$$

2.10. We have shown in 2.2 that to prove the vanishing conjecture on a Gorenstein ring it is enough to prove the following:

Given M a perfect module of finite length, Q a $\mathrm{C}-\mathrm{M}$ module such that $\operatorname{dim} Q=n-1$, then $\chi(M, Q)=0, n=\operatorname{dim} R$. We choose $\left\{y_{1}, \ldots, y_{n-1}\right\}$ a Q-sequence $\mathrm{Ann}_{R} M$ which is also an R-sequence. We consider an exact sequence $0 \rightarrow T \rightarrow R^{r} \rightarrow$ $Q \rightarrow 0$. Applying $\otimes\left(R /\left(y_{1}, \ldots, y_{n-1}\right)\right)$ we get

$$
\begin{equation*}
0 \rightarrow \frac{T}{\left(y_{1}, \ldots, y_{n-1}\right) T} \rightarrow\left(\frac{R}{\left(y_{1}, \ldots, y_{n-1}\right) R}\right)^{r} \rightarrow \frac{Q}{\left(y_{1}, \ldots, y_{n-1}\right) Q} \rightarrow 0, \tag{37}
\end{equation*}
$$

noting that since y_{1}, \ldots, y_{n-1} is a Q-sequence

$$
\operatorname{Tor}_{i}^{R}\left(\frac{R}{\left(y_{1}, \ldots, y_{n-1}\right) R}, Q\right)=0, \quad i>0,
$$

(ty the Special Lemma). Now

$$
\chi^{R}(M, Q)=\chi^{R\left(y_{1}, \ldots, y_{n-1}\right)}\left(M, \frac{Q}{\left(y_{1}, \ldots, y_{n-1}\right) Q}\right)
$$

Therefore $\chi^{R}(M, Q)=0$ if and only if

$$
l\left(M \otimes\left(\frac{R}{\left(y_{1}, \ldots, y_{n-1}\right) R}\right)^{\prime}\right)=l\left(M \otimes \frac{T}{\left(y_{1}, \ldots, y_{n-1}\right) T}\right)
$$

(from (37)), i.e. if and only if

$$
l\left(M \otimes \frac{T}{\left(y_{1}, \ldots, y_{n-1}\right) T}\right)=r\left(\frac{T}{\left(y_{1}, \ldots, y_{n-1}\right) T}\right) l(M)
$$

where $r\left(T /\left(y_{1}, \ldots, y_{n-1}\right) T\right)$ is the rank of $T /\left(y_{1}, \ldots, y_{n-1}\right) T$, which is the rank of

$$
\left(\frac{T}{\left(y_{1}, \ldots, y_{n-1}\right) T} \otimes Q\left\{\frac{R}{\left(y_{1}, \ldots, y_{n-1}\right)}\right\}\right)
$$

where $Q\left\{R /\left(y_{1}, \ldots, y_{n-1}\right)\right\}$ is the total quotient ring of $R /\left(y_{1}, \ldots, y_{n-1}\right)$.
Thus on a complete intersection R to show $\chi^{R}(M, Q)=0$ we are led to the following question: On a complete intersection S of dimension 1 , given a module M with $l(M)<\infty$, a module T with $T \otimes Q\{S\}$ free over $Q\{S\}$ (the total quotient ring of S) and $\operatorname{Tor}_{i}^{S}(M, T)=0$ for all $i>0$, is it true that $l\left(M \otimes_{S} T\right)=r(T) l(m)$ where $r(T)$ is the rank of $T \otimes Q\{S\}$ over $Q\{s\}$?
2.11. Claim. To prove $\chi^{R}(M, Q)=0$ it is enough to prove in the above situation $l\left(M \otimes_{S} T\right) \geq r(T) l(M)$.

Proof. If $l\left(M \otimes_{s} T\right) \geq r(T) l(M)$, from the arguments above we get $\chi^{R}(M, Q) \leq 0$. Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a maximal R-sequence contained in $A n n_{R} M$. We consider the following exact sequence:

$$
\begin{equation*}
0 \rightarrow L \rightarrow\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}\right)^{t} \rightarrow M \rightarrow 0 . \tag{38}
\end{equation*}
$$

Since $l(M)<\infty, \operatorname{pd}(M)<\infty, l(L)<\infty, \operatorname{pd}(L)<\infty$, from (38) we have

$$
\begin{equation*}
\chi(M, Q)+\chi(L, Q)=\chi\left(\left(\frac{R}{\left(x_{1}, \ldots, x_{n}\right)}\right)^{t}, Q\right)=0 \tag{39}
\end{equation*}
$$

by [5], Lemma 1. Since $\chi(M, Q) \leq 0$ and $\chi(L, Q) \leq 0$, (39) implies we must have $\chi(M, Q)=0$ and $\chi(L, Q)=0$. Hence in this section we investigate the following question: Given a module M of finite length and a module N over a complete intersection of dimension 1 , such that $N \otimes Q\{R\}$-free, where $Q\{R\}$ is the total quotient ring of R, is it true that $l\left(M \otimes_{R} N\right) \geq r(N) l(M)$? I do not know the answer in full, but the answer is "yes" in the following cases:

Case i : $M=K=R / m$. Let $r(N)=\operatorname{rank} N=r$, say. Then we have $l\left(N \otimes_{R} K\right)=$ $l(N / m N)=$ minimal number of generators of $N=\mu(N)$ and we know $\mu(N) \geq r(N)$.

Case ii: M is of finite projective dimension. We have

$$
\begin{equation*}
0 \rightarrow N \rightarrow R^{r} \rightarrow Q \rightarrow 0 \tag{40}
\end{equation*}
$$

Then Q is a module of finite length. Since $\operatorname{depth} M=0$, $\operatorname{depth} R=1$, from depth $M+\operatorname{pd} M=\operatorname{depth} R$ we get $\mathrm{pd} M=1$. We consider $0 \rightarrow R^{r} \rightarrow R^{r} \rightarrow M \rightarrow 0$ a minimal projective resolution of M. We have

$$
0 \rightarrow \operatorname{Tor}_{1}^{R}(M, Q) \rightarrow Q^{r} \rightarrow Q^{r} \rightarrow \operatorname{Tor}_{0}^{R}(M, Q) \rightarrow 0
$$

Hence $\chi(M, Q)=0$. From (40) we have $\chi(M, Q)=r l(M)-l\left(M \otimes_{R} N\right)$. Therefore $l\left(M \otimes_{R} N\right)=r l(M)$.

Case iii: $R=K\left[\left[x^{2}, x^{2 n+1}\right]\right]$. In this case as we have seen in $1.14, N \simeq \oplus I_{i}$, the sum being finite, and $I_{i}=\left(x^{2 i}, x^{2 n+1}\right), 1 \leq i \leq n$, and $M \sim_{1} \oplus R / I_{i}$ on the right. We first prove the following lemma.
2.12. Lemma. If $M \sim_{1} M^{1}$ on the right and $l\left(M^{1} \otimes_{R} N\right) \geq r(N) l\left(M^{1}\right)$, then $l\left(M \otimes_{R} N\right) \geq r(N) l(M)$.

Proof. We consider the exact sequences

$$
\begin{align*}
& 0 \rightarrow M \rightarrow T \rightarrow \frac{R}{(x)} \rightarrow 0, \tag{41}\\
& 0 \rightarrow N \rightarrow R^{r} \rightarrow Q \rightarrow 0 . \tag{42}
\end{align*}
$$

Since Q is of finite length, $\chi(R /(x), Q)=0$. From (41), since $\operatorname{Tor}_{2}^{R}(R /(x), Q)=0$,

$$
\sum_{i=0}^{1}(-1)^{i} l\left(\operatorname{Tor}_{i}^{R}(M, Q)\right)=\sum_{i=0}^{1}(-1)^{i} l\left(\operatorname{Tor}_{i}^{R}(T, Q)\right)=p
$$

say. Now if $l\left(T \otimes_{R} N\right) \geq r l(T)$ that implies (from (42)) $p<0$, and that again implies $l\left(M \otimes_{R} N\right) \geq r l(M)$. Hence when $M \sim_{1} M^{\prime}$ on the right we have the required result.

So to prove our result it will be enough to take $N=I_{i}=\left(x^{2 i}, x^{2 n+1}\right)$ and $M=$ $R / I_{k}=R /\left(x^{2 k}, x^{2 n+1}\right)$. We then have to show since $r(N)=1$ that $l\left(I_{i} / I_{i} I_{k}\right) \geq l\left(R / I_{k}\right)$ which is true (and easy to check).

Acknowledgement

Most of the main results of this paper were obtained when I was doing my Ph.D. thesis under the guidance of M. Hochster at the University of Michigan. I would like to thank him for his constant inspiration and encouragement throughout this work.

Keferences

[1] H. Bass, Torsion free and projective modules. Trans. Amer. Math. Soc. 102 (1962) 319-327.
[2] H. Bass, On the ubiquity of Gorenstein rings, Math. Zeitschrift, 82 (1963) 8-28.
[3] M. Hochster, Cohen-Macaulay modules, in: Conference on Commutative Algebra. Lect. Notes in Math. No. 311 (Springer, Berlin-Heidelberg-New York. 1973) pp. 120-152.
[4] I. Kaplansky, Commutative Rings (Allyn and Bacon, Boston, 1970) (Rev. edn. 1971).
[5] S. Lichtenbaum, On the vanishing of Tor in regular local rings, Illinois J. Math. 10 (1966) 220-226.
[6] E. Matlis, 1-Dimensional Cohen-Macauley Rings, Lect. Notes in Math. No. 327 (Springer, Berlin-Heidelberg-New York, 1973).
[7] R.E. MacRae, On an application of the fitting invariants, J. Algebra 2 (1965) 153-169.
[8] I.P. Serre, Algèbre Locale Multiplicités, Lect. Notes in Math. No. 11 (Springer. Berlin-HeidelbergNew York, 1975).

