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Introduction 

In this paper we study the notion of weak linking (see Definition 1.7 and its 
connection to Serre’s intersection multiplicity. Theorem 1.9 provides us with a 
necessary and sufficient condition for weak linking between two Cohen-Macaulay 
modules of codimension 1 over a Gorenstein ring in terms of syzygies of the 
respective modules. An immediate corollary (see 1.12) of this theorem is the fact 
that modules of finite length, finite projective dimension over a Gorenstein ring R 
of dimension 1 are weakly linked to R/(x), x a non-zero-divisor on R. Some more 
corollaries are described in 1.11, 1.13 and 1.14 - the latter is of particular interest, 
since it describes the modules of finite length over K[[x*,x*“+‘]J via weak linking. 

In Proposition 2.1 we give a necessary and sufficient condition for two C-M 
modules over a C-IM ring to be isomorphic in terms of their syzgies. This eventually 
leads in 2.2 to the higher dimensional analogue of Theorem 1.9 which I cannot 
prove yet. But in 2.2 we show how this higher dimensional analogue implies Serre’s 
intersection multiplicity conjecture (in a more general set-up) when the sum of the 
dimensions of the modules is less than that of the ring. In 2.10 we answer the 
following question partially: Given a complete intersection R with dim R = 1, Ma 
module with I(M) ~00, N a module with S-IN S-‘R-free, where S= R - u Pi, 
Pie Ass(R), is it true that I(?+4@,N) rr(N)f(M) where r(N) is the S-'R rank of 
S-IN. We show that an affirmative answer to the above question at least when 
Torp(M, N) =0, for all i>O, would imply the intersection multiplicity conjecture 
for a pair of modules with sum of their dimensions less than that of the ring. 

In this work all rings are commutative local with identity and all modules are 
finitely generated. 

We say that a local ring R satisfies the vanishing conjecture if given any pair of 
modules M and iV such that 

dim M+ dim N<dim R, 

pd .M 

X(M N) = c (-l)‘I(Tor/?(M, N)) = 0. 
,=O 
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The reader can notice immediately that this is a generalized version of Serre’s inter- 
section multiplicity over a regular local ring. 

1. Weak linking 

1.1. Notation. We use the following abbreviations and notations: 

I(M) = length of the module M, 
Q = the field of rational numbers, 

C-M = Cohen-Macaulay, 
n.z.d. = non-zero divisor, 
d.v.r. = discrete valuation ring, 
Q(R) = total quotient ring of the ring R, 
pd M= projective dimension of M, 
r(N) = torsion-free rank of N, 

Q(N) =N@R (QWt 
P(“)={xER Itx~p” for some PER-P). 

Let R be a local ring with 1. Let M be a finitely generated module with finite pro- 
jective dimension n. Let N be another finitely generated module with I(&Z@ N) < 03. 
Then 

n-i 
xi(M, N) = kg0 (-l)k4Tor:D4 N)). 

We leave the proof of the following lemma as an exercise for the reader. 

1.2. Special Lemma. Let R be a local ring with 1. Let M be a finitely generated 
module with pd M= n. Let N be another with M& N# 0 and let AnnR M contain 
an N-sequence of length r. Then Torf_ i(M, N) = 0, 0 pi < r. 

1.3. Lemma. Let R be a iota! ring. We consider an exact sequence 

f 
O-+S- R”+M-+O. 

Let 4 : R” -R” be given by 

Qh)=xel, @@2)=e2, . . . . W,)=e,, 

wheree;=(O ,,.., O,l,O ,..., 0) with 1 on the i-th place and x is an n.z.d. in R. Then $I 
is injective and there exist exact sequences 

@I- 
O+S-R”*M’+O, O+M+M’+%O. 

(x) 

Proof. Obvious. 
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1.4. Lemma. Consider an exwt sequence 

f 
Q-S- R”-M-O. 

Let @I: R”-R” begiven by 

@(el)=el, $@2)=e2-xl2eb @(e3)=e3-x13el, . . . . @(e,)=e,-x+7. 

Then @ is an isomorphism. Let M’ = coker(@ . f ). Then M== Ml. 

Proof. Obvious. 

1.5. Lemma. Let R be a local ring. Let A = (aG) e an n x n matrix over R such that 
det A is an n.z.d. Then after column operations all can be replaced by an n.z.d. 

Proof. See [4]. 

1.6. Lemma. Consider an exact sequence 

O+M, -+M2-+M3-0. 

Let sy.z’M,, syziM3 be any specific choices of i-th syzygies for Ml, M3 (not 
necessarily minimal). Then 

O-+syziMl -+syziM2-+syziM3+0 

is exact for some choice of syz’M2. 

Proof. Obvious. 

It is clear that if pd Ml = io, by taking a minimal resolution of Ml, 

SYZ ~O+~M2=~y~iO+$j,f3, 

while if pd M3 = iO, 

syz”‘+‘M,@~yz’O+‘M~=syz”‘M~. 

Finally if pd M2 = iO, 

syziOMl = syz’(syzioM3) = syz’O+ ‘M, 

(since syz’OM2 is free). 

1.7. Definitions. Let R be a C-M ring. We say that two modules Ml and M2 are 
t-linked on the right, or that M2 and Ml are t-linked on the right, if there exists an 
exact sequence O-+Ml *M2 -E -0 where E is a finite direct sum of cyclic modules 
of the form 

R 

by I, . . . , x,P ’ 
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where {x, , . . ..x.} is an R-sequence. Let A be the equivalence relation generated by 
‘being t-linked on the right’ in the category of finitely generated modules over R. 

We say two modules M,, M2 are weakly f-linked on the right if they belong to the 
same class under A; similarly we define weak t-linkage on the left (respectively in the 
middle) by placing E on the left (respectively in the middle) in the above sequence. 

We say M, and Mz are weakly t-linked at the end if they belong to the same class 
defined by the equivalence relation generated by ‘being f-linked on the right’ and 
‘being t-linked on the left’. 

MI and M2 are weakly t-linked if they belong to the same class defined by the 
equivalence relation generated by ‘being t-linked on the right’, ‘being f-linked on the 
left’ and ‘being t-linked in the middle’. 

1.8. Notations. (i) We write Ml -( M2 to express that Ml and Mz are weakly 
t-linked. We write Ml -[ Mt at the end to express that Ml and Mt are weakly t-linked 

at the end. 
(ii) For a module T, we denote by (T) the projective class of T, i.e. all modules N 

such that NOR “= T@R’ for some nr0, fro. 

1.9. Theorem. Let R be a Gorenstein ring of dimension n. Let M,, M2 be two C-M 
modules with dim Ml = dim M2 = n - 1. Then 

(i) MI -, Ml at the end @ (syz’(M,)) = (syz’(M2)) for some i> 0. 
(ii) MI -l M2 e (syz’(M~))=(~yz’+~(M~)) for some k>O, i>O. 

Proof. (i)(a) From an exact sequence of the form 

O-M-N- + h-0, 
X, 

we get by Lemma 1.6 

syz’(N) z syz’(M)@R’, 

i.e. (syz’(N))=(syz*(M)). From an exact sequence of the form 

o-* -$-M+N-0, 
, 

we get syz2(M) 3 syz’(N) by Lemma 1.6, i.e. (syz’(M))z (syz2(N)). We note that if 
(syz’(M~)>=(syz’(M~)) then (sy~“~(M,))=(syz’+j(M~)>, jr0. Hence M, -,Mz at 
the end implies (syz’(M1)> = (syz’(M2)) for some i> 0. 

(i)(e) First let us assume <syz’(M1))=(syz’(M2)). We consider 

/, 
O-+S, -R"' ‘MI -0, (1’) 

f2 
O-S2- R”? -+M2 -+O. (2’) 
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Since (a) Sl@R’lzSz@RQ; and (b) T-IS, is a free T-‘R module of rank n,, i= 1,2, 

where T= R - u P,, P, E Ass(R); we have nI + t, = n2 + t,. From (1’) 

fiBid 
O-+.S,@R[‘- R”‘@ R” +M, ‘0, (1”) 

O+&@R 
fi3id 

0 - R”?@R’? -+M2 -0. (2”) 

Hence (from (1”) and (2”)) without loss of generality we can write 

f 
O-S- R”-M, ‘0, (1) 

O-S& R”-M2 -0. (2) 

Let f’ , . . . . f,, be the components off; let gl, . . . . g, be the components of g. Since 

T-‘(f) 
T-‘S- T-‘(R”), 

T-‘(f)*: Hom(T-‘R”, T-‘R) -% Hom( T-IS, T-l R). Thus Hom( T-IS, T-‘R) is a 

free T-‘R module of rank n generated by f’, . . . . f,,. 

Similarly Hom(T-‘S, T-‘R) is a free T-‘R module of rank n generated by 

gl, . ..*g.. 
Since ( fl, . . . . fn} and (g,, . . . . g,) are two sets of bases for Hom(T-‘S, T-‘R) as a 

T-‘R module we have 

where A is an n xn matrix over T-‘R, and detA is a unit in T-‘R. Choosing the 

denominators of the entries of A we have 

r(I:)=/4 (:> 

where entries of A are in R, r and det A are n.z.d.s. in R. Let 

A= 

Then 

ail al2 ..a ah 

a21 a22 .‘. a2n 

_ad I an2 e.0 arm 

rgi= C Clijfj. 

,=I 

For every i we denote the i-th row of A by ai. We write 

(3) 
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The proof will be completed by the following steps: 

Srep 1. From (2), since g(s) = (gr(s), . . . ,g,(s)) E R”,sE S, we have 

M2s R” 
(g 1, . . ..g.)S * 

(4) 

Consider the map @ : R’-+R” given by 

ei- fe; Vi. 

Then by repeated application of Lemma 

R” RR 

(g I,..., g,)S--‘(rg I,... ,QL$J 

R” 

1.3, 

at the end 

=(a,.f, . . . . a,.f>S 
(by (3)). (9 

In the matrix A, by Lemmas 1.4 and 1.5, we can assume that alI is an n.z.d. 
Consider the map @, : R” -*R” given by 

@t(er)=et, @l(e2)=alle29 . . . . @l(en)*allen9 

then by Lemma 1.3, 

R” R” 

(a,.f, . ..1 
-1 

cb..f)S (al.f,all(a2.f),...,all(or,.f))S 
(6) 

We consider the map rg2 : R” -+ R” defined by 

~2(el)=el-a2le2-...-a,le,, @2@2) = e2, . . . , @2@,) = en. 

Then by Lemma 1.4, 

R” R” 

(al.f,a,l((rZ’f),...,a,l(a,.f))S -(al.~P2.f:P3.f,...,Pn.fl)S 
(7) 

where f ‘= (f2, . . . ,fn), pi = aI lal - ajlal, i.e., P2, . . . , /3,, are the rows of the matrix 

( 

~11~22-~12~21 *** ~ll~2”-~2l~l2 

B= ; 

~1147,2-~n1~,2 .** ~Il~nn-~nl~ln >* 

Since det A is an n.zd. det B is also. We write B= (bij), 1 <Ian- 1, 1 S~S n - 1. 
Since det B is an n.z.d. in R by Lemma 1.5, we can assume 6t, is an n.z.d. in R. We 
denote the module on the right hand side of (7) by N. Now starting with B and 
repeating the same process a finite number of times we see that 

N-, R” 
(AijU )S 

at the end (8) 
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where (A,) is an upper triangular matrix and det(J.,,) = A,, . AZ2 ... A,, is an n.z.d. 

in R. 

We denote the module on the right-hand side of (8) by T. By (4)-(g), we have 

shown M2 -, T at the end. 

Step 2. We have 

M, i 
R” 

(fly . . . ,.m . (9) 

We consider the map v/t : R”-R” defined by 

Wt(et)=j.t,et, Wr(ez)=ez, . . . . Wt(e,)=e,. 

Then by Lemma 1.3, 

R” R” 

vi, *..9 f”P -‘@-l,_fi~f27 . ..?.m . 

We apply the map u/~: R”-R” given by 

el-el, 

e2-e2+i.12el, 

en-e,+iI,el. 

Then by Lemma 1.4, 

R" R” 

Ul,f,,fi Y..., fn)s-(~,,f,+...I~,,s,,f2 ,..., f,)S at theend* (lo) 
Now repeating the above process a finite number of times we see 

MI-, 
R” 

(hh + . ..+~Infn.~22fZf..‘+~2nfn,...,~nnfn)S 
at the end 

Hence from Step 1 and Step 2, M, -, Ml at the end. 

NOW suppose (syz’(M,)> = (syz’(Mz)) for i> 1. By applying arguments similar to 

those applied at the beginning of the proof, we can write 

O~S~R”I-‘_*...-R”I~R”O~M,_*O, 

04S-+p-I4... 
P 

-~Rmi - Rf”a-+M2-+O_ 

Let St = Im a, S2 = Im p. Then we have 

(11) 

(12) 

~~S_*R”I-I~...~R”I~S,~O, (13) 

0~S~Rml-l-r...-rRml-rS2-*0. (14) 
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Applying Hom( ,R) = ” we get 

0-S;-&* . ..-.R”.-,-+-.O, (13’) 

O--*S+R”‘:-+ . ..-+R”Y-.-+S”+O, (14’) 

Since (RI)” z R’, from (13’) and (14’) we get the following homomorphism: 

.S:@RPzS;@R‘? (15) 

Since MI, Mz are C-M modules with dim MI = dim fV12 = n - 1, St and S2 are C-M 
modules and dim St =dim Sz= n, St and S2 are reflexive, i.e. St ES;)“, Sz~Si”, 
Applying Hom( ,R) in (15), S~“@RP”zS~U@Rq’I. Thus S,@RPzS,@R”, i.e. 
(St>=(&), i.e. (~yz’(M~))=(syz’(Mz)) and hence by the first part MI -, M2 at the 
end. 

Remark. We note that throughout the proof the linking was always actually on the 
right. 

(ii) Suppose MI -, Ml. We consider the following exact sequence: 

O+IVZ+,$, A-N-0, x an n.z.d. in R. 
I 

Then by Lemma 1.6, we have (syz’(M)>~<syz’(N)). When MI -, ML, since only a 
finite number of such exact sequences and a finite number of exact sequences as 
described in (i) occur, we have from the (-) part in (i) and from the above, 
(syz’(M,)) = (syz’+ k(M2)> for some k > 0, i >O. 

(ii)(=) Suppose (syz’(Mt)) =(sy~‘+~(M~)). Since dim M2= n - 1, and R is C-M 
we have depth AnnR M2 = 1. Let XE AnnR M2 be an n.z.d. We map direct sums of 
R/xR onto Ml. If we do this once we get 0-tM:“dE+M2+0 and (syziM2)= 

(syzj- ‘Ml”), for large j. After k steps we get Mik’-, M2 and 

(syz’+ k(Mz)> = (syz’(M,(@)) for large r 

=(syz’(M~)) for large r. 

So M, -, Mik’ at the end by (i). Hence Ml-, MI and we are done. 

1.10. Corollary. Suppose R Gorenstein, dim R = d = dim iV, and N is C-M. Let 
/ 

OdN-R”‘T,*O, (16) 

g 
O-X-RR+T2-f0, (17) 

be given, where T, and T2 are such that S-‘T, and S-‘T2 are free S-‘R modules 
where S = R - u Pi, Pi E ASS(R). Then Tj -, Tz on the right. 

Proof. Let K be the total quotient ring of R. We apply OK, and we get an exact 
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sequence 
O-N&K-K”-Tt@,K-0. (18) 

Let rank (N&K) =s. Applying Hom( ,K) = * we get from (18) an exact sequence 

o-(T~O,K)*~(K”)*~(NO,K)*-o. (19) 

Let _fi , . . . , f, be the components of f. Then (19) shows that f,, . . . , fn generate 

(NC&K)*. Let _fr, . . . , f, be a free basis of (NGR K)*. Hence XE R - (0) such that 

xfI = i alkfk9 j=s+ l,...,n. 
k=I 

We apply @ : R” -, R” defined by 

ei-ei, i= 1, . . ..s. 

ej -Xej, j=s+l n. ,.*a, 

Then by Lemma 1.3, 

T, = 
R” 

U-I, . . ..fnP 

R” 

-‘(f,, . . . . fstzcf,,,, . . ..xfnW 

R” 

=(fr,...,f,,~;;,a,+~.kfk,...tCI=~ankfk)N’ 

Now we apply I,Y : R” --*R” given by 

en-en. 

Then by Lemma 1.4, we get 

R” 

(fi,...,fstC~=la,+l,kfk,..., Cislankfk)N 

RR 

-(fly -..,f2?09 %I &+2.kfkt ...>N * 

Repeating the above operation a finite number of times we get 

R” 

Tl-l(j-l )..., s,,o ,..., 0)N 
= T;, say 

RS 

=UI, . . ..L)N 
@R”-S= L,@R”-*. (20) 
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So we have 

O-N-R’-+L,*O. 

Similarly from O-N+R-+T;-+O we get 

(21) 

7.2-I 
R” 

k 0 0)N 
= Ti, say 

1, . . ..g 5, t*.*, 

RS 

=&f S 
,, ...,g lN@R”-S=L2@R”-S 

and we have 

O*N-+R’-L?+O. (22) 

We notice L,, L2 are C-&M modules with dim L; = dim r- 1, i= 1,2. Hence by the 
theorem LI -, L2 on the right and L,@R”-‘-, L2@RneS on the right. Hence 
T l -] T2 on the right. 

1.11. Corollary. Assume R Gorenstein, dim R = n. Suppose that 

& 

O-N, -RR”-M-O I 

v 
0-IV,-p-----_*~ _,. 2 

is exact. Then M, -, M2 at the end. Here M,, Ml are C-M modules with 

dimM1=dimMz=dimR- 1. 

Proof. From the above diagram, we construct T, where T is given by 

w.0 
O-N, -R"- T-+0. (23) 
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Hence we have from the diagram 

(24) 

Thus T-, Mz at the end. We consider (23) with 

O-+N, -R”-+M,O. (25) 

By the theorem T-, MI at the end. Hence A4t - Mz at the end. 

1.12. Corollary. On a Gorenstein ring of dimension 1, any module of finite length 
and finite projective dimension is linked to R/(x) for any n.z.d. XE R. 

Proof. Since (i) M is of finite length, depth rM=O; (ii) dim R = 1 =depth R; 
(iii) Proj dim M+ depth M= depth R; 
we have Proj dim M= 1. 

Let x be any n.z.d. of R. Then we get 

o-R-R-+0 
X 

a projective resolution for R(x). Since (syz’(R/(,~)))=(syz’(M)), by the theorem, 

M-, R/(x) at the end. 

1.13. Corollary. Assume R Gorenstein, dim R = n. Suppose we have 

@ 
O+R”-N+T,+O, (26) 

V 
O+R”-N+Tz+O, (27) 

where T,, T2 are C-M modules with dim 7;. = dim R - 1, for i = 1,2. Then T, - Tz at 
the end. 

Proof. Since K (i=1,2), are C-M and dim I,=n-1, Ext’(c,R)=Ti”(i=1,2) are 

also C-M, dim T” = n - 1 and ( Ti”)‘z Z. From (26) and (27) we have, by applying 

Hom( ,R)= *, 

O-+N*-+R’* T,‘+O, 

Hence by the theorem T,“- , T;) at the end. But since any exact sequence O-L, -, 
Lz-R/(x)-+0 with L,, L2 C-M, dim L;=n- 1, and x an n.z.d., gives rise to an 

exact sequence (by applying *) O-+R/(x)+Li -+Ly ‘0, we have Tt”-, T: 0 T, -, T, 
at the end. Hence the result follows. 
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1.14. Corollary. Let R be a reduced Gorenstein ring of dimension 1, such that 
every ideal in R can be generated by 2 elements, Let R be the integral closure of R in 
its full ring of quotients be a finitely generated R-module. Then any module M of 
finite length on R is weakly linked to @,“=, R/I, where the I,‘s are ideals of R with 
ht Ii>0 for all i. In particular on R = K[[x’, x?“+‘]] every module of finite length 
M-, @:=, R/Ii, where Ii = (xzi, xZn+ ‘), 1 5 i 5 n or I, is principal. 

Proof. We consider the following exact sequence 

O-S-R”+M-0. (28) 

Since S is torsionless on a one-dimensional reduced Gorenstein ring R such that R is 
a finite type module over R, Sr efinite 1; where the f;‘s are ideals of R ([1],2,7). 
Hence we have 

From (28) and (29) by the theorem M-,@R/l;. In R =K[[x2,x2”+‘]] since 
m = (xZ,xZn+ ‘) is generated by two elements and R is a domain, R is Gorenstein 
([2],2,6.4). Since the multiplicity of R with respect to m is 2, every ideal can be 
generated by 2 elements ([6], 12.8). 

Now we use the following lemma. For a proof one is referred to [2], 1, 
Lemma 1.8. 

Lemma. Let R be a noetherian local integral domain with maximal ideal m and 
integral closure R, and assume every non-zero ideal of R can be generated by 2 
elements. Then 

(i) R’ = m-’ is a proper finite integral over the ring of R. 
(ii) Every non-principal ideal I is an R’ -module, i.e. R’ I = I. 

(iii) If S is a proper finite integral over the ring of R then R’ c S and every ideal of 

S is generated by at most 2 elements. 

Since in our case R=K[[x]] is a finite module over R, we have the following 
unique chain of integral extensions from R to R: 

By the lemma any finite integral extension of R contained in I? must be one of those 
described above, since (x2, xZk+ ‘)-I = K[[x’, x2k- ‘I]. 

Claim. Any non-principal ideal I of R is isomorphic to (x*~,x~“-‘) for some i. 

Proof. Any non-principal ideal I by the above lemma becomes a module generated 
by a single element at a certain stage, say at the i-th stage, i.e. over K[[x*, x2*+ ‘-2’]] = 
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R,. Since over R,, I is isomorphic to I, = (x”, x’~’ ’ 1, which is also principal over R,, 
they are isomorphic over R. 

Thus by the first part of the corollary the required result follows. 

2. Multiplicities 

2.1. Proposition. Let R be a C-M ring of dimension n. Let M,, M2 be two C-M 
modules of dimension r. Then MI ;,M? * (syz’(M,))z(~yz’(M~)) for some 
i, 1 li<n-r. 

Proof. (-) Obvious. 

(=) We first show that M’N e 16fzN tvhere M is the completion of M 

with respect to the maximal ideal m of R. M=N=hj=N. Let M-IN. Then 

r#~ E HomR(M,N) = HomR(M, N)‘. Hence there is a &E HomR(M, N) such that 

@ - 0 E m HomR(M, N)-. Therefore 

because @ and @c induce the same map once tensored with R/m. Thus, by 

Nakayama’s Lemma, N=&(M), i.e. we can map M onto N and similariy we can 

map N onto M. But for finitely generated modules over commutative rings this im- 

plies M= N. Thus we are reduced to showin,. 0’ If R is complete C-IV of dimension n, 
and M, and Mz are two C-M modules of dimension r such that (syz’(M,))= 

(syz’(M,)>, then M2=M2. We consider the following resolution of M,: 

O-+S,-+R”I-’ -+...+R”r -+R”O+,M,-+O, (30) 

Let Sk = syzk(Mt) given by (30). Since R is complete it has a canonical module Q. We 

consider 

Since M, is 

O+S, -+R”Q +M, -0. 

C-M with dim M, = r, and dim R = n, 

Exti(M,, Q) = 0 for j# n - r, 

+O for j=n-r. 

(31) 

In (31), we apply Hom( , .I?), then from the long exact sequence of Ext, we get 

O-Ext”-‘-‘(S,,Q)-Ext”-‘(M,,Q)-0. (32) 

Now considering 

O+&-tR”‘-+S, ‘0, 
..,... 

O-+Sk+Rnk-‘+&_,-+O, 
O-S;+R”i-‘+S,_,-+O, 
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and applying Hom( ,Q), writing the long exact sequence of Ext (as we have done 
above) we get 

Ext”-‘(M,,R)=Ext”-‘-‘(S,,R)=Ext”----(Sz,.) 

= .a. =Ext”-‘-‘(S,, Q). 

Similarly Ext”-‘(Ml, Q) = Ext”-‘-‘(T;, Q), where 

is a projective resolution of MI. Since (S;) = CT,>, Ext”-‘-((S;, Q) = Ext”-‘-i(~j, a). 
Hence Ext”-‘(M,, !2) = Ext”-‘(M?, Q). Since for a C-M module M of dimension r, 
Ext”-‘(Ext”-‘(M, Q), Q) = M, we have from the above MI = Ml. 

2.2. The above proposition shows that for any Mt, M2 of finite length on Gorenstein 
ring R of dimension n, Mt =Mz e (syz’(M,))=(syz’(Mz)) for some i< n. This 
naturally gives rise to the following question: What relation exists between MI, Mz 
when (syz”(M,)>=(sy~“(M~)). We have seen by Theorem 1.9 that when n = 1, 
M, -, Mz at the end. Is this true in higher dimensions also? M. Hochster has the 
following conjecture which we denote by HC: 

HC. On a Gorenstein ring R ,of dimension n, if MI, Mz have finite length and 
(syz”(M,))= (syz”(Mt)) then Mt -” Mz at the end. 

2.3. Proposition. Suppose HC holds on Gorenstein rings. Then R satisfies the 
vanishing conjecture. 

Proof. We first prove the following two lemmas. 

2.4. Lemma. Let R be Gorenstein of dimension n. For any two modules M, N with 

pdM<oo, I(M@,N)<w, dimM+dimN<dimR, 

x(M, N) = 0 if and only if for any perfect module M and C-M module N such that 

[(MO, N) < 00, dimM+dimN=n-1, 

x(M, N) = 0. 

Proof. (-) Obvious. 
(-) This follows by the the following three claims. 

2.5. Claim. Let M and N be two modules over a C-M ring such that 
l(M@, N)>o3 and dimM+dim N<dim R. Then we can choose a system of 
parameters {x,, . . . , x,) for M contained in AnnR N such that {x1, . . . ,x,) is an 
R-sequence, where r = dim M. 
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Proof. Let {Pi,..., P,} =Ass(R) and {s,, . . . , qr) be minimal primes of Ass(M). Let 

I,= AnnR N, 1,~ = AnnR M. Then since I(M@R N) < co and dim Mi- dim Ns dim R, 
we can pick 

X,EI,v- lj P,- (J q,, 
,=I ,=I 

noting that since IL. + I.,, is m-primary, where rn is the maximal ideal of R, 

Then x1 is an n.z.d. on R and 

dim $=dimM- 1, 
I 

dim2=dimR-l. 
I 

Since M@* N=M/.u,M@, I,R N we start with M/x,M over R/x,R and continue the 

same process. After a finite number of times we get the required result. 

Let dim M = r, dim N = s, I,M = AnnR M, IfV = AnnR N. Then dim M+ dim R/IN < n 
and hence dim M-e dim R - ht IN < n, i.e. 

htI,>dimM. (33) 

2.6. Claim. Suppose we have pdRM< os, I(M@N)<m and dim M+dim N< 

dim R. In order to prove ,#I, N) = 0 we can take N to be C-M. 

Proof. We choose {xr, . . . , x,} a system of parameters for M such that X;E IN, 

i=l ,..., r,and {x, ,..., x,} is an R-sequence. We extend it to {x,, .,.,x,, x,, , , .._, q,}, 

a maximal R-sequence contained in 1,~ where h = ht I,V= depth ItV. 

We know by [S], Th. 1, that 

( R 

x (x I,..., x, ,..., XJM > =O 
(34) 

for r<klh. Suppose depth N=t<n-h. We map a finite direct sum of 

R/(x,, . . . . xh) onto N; then the kernel Nr of this map is such that depthPI, = 

depth N+ 1. Repeating this process for a finite number of times we get a module 

N,, _ ,, which is C-M of dimension n - h and such that x(M, N) = 0 e x(M, N,, _ ,,) = 0 
(by (34)). Thus the claim is proved. 

Remark, By applying similar arguments we can take M to be perfect. 

2.7. Claim. Under the same hypothesis as in 2.6 we can take N to be C-M with 
dimN=n-r-l. 

Proof. We have shown in Claim 2.6. that we can take N to be C-M and dim N= 
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s< n - r - 1. We consider the following exact sequences: 

R PI 
OdN,- 

(X I,...,Xh-,I 
-N-O, 

P1 
O-N,- 

R 

(x ,,...,x/,-2) > -N, -0, 

. . . . . . 

R i 
Pl 

O-*N(+ 
(x It...,Xh-t) 

-N,_, '0, 

wheret=n-r-l-s. WenoteeachN,isC-M,dimNi=dimN,_t+l,h-t=r+l, 
and x(M, N,- t) = -x(M, NJ. Thus we have constructed a C-M module N, = T say 
of dimension n-r - 1 such that x(M, N) =0 0 x(M, T) =O. Thus our claim is 
established; moreover, we have dim M+ dim T= r + n-r- 1 = n - 1. 

In the course of proving the three claims we have shown that if M perfect, N 
C-M, f(M@N) < 03 and dim M+ dim N= dim R - 1 imply x(M. N) = 0, then the 
vanishing conjecture holds over R. 

2.8. Lemma. Let R be a Gorenstein ring of dimension n. Let M be perfect and 

N be C-M such that l(M@, N)< 33, dimM+dimN=n-1. Then if HC holds, 

x(M, N) = 0. 

Proof. We have seen htIN=r+l, where r=dimM. Let {xt,...,.~,] be an 
M-sequence contained in I, such that it is also an R-sequence. Let 

O-R%+ . ..-rR"O-+M_.() (35) 

be a minimal projective resolution of M. Since (_~r, . . . ,xr) is an M-sequence, 

Torf M, 
( 

R 

(x I v . *. 9 x,> > 
=o, 

therefore applying @(R/(x,, . . . , x,)) to (35) we get the following exact sequence: 

Hence pdR/(.r,. ,_, ,.&~WI~ . .- , -GM) < 00. 
Since (A OR I?)@, C=A OR (f3& C) as A, B, C are R-modules, we have 

Let 

Torf(M, N) =Torlf’(XI’...‘Xr) M 

lx 1, . . ..&)M 
,N 

> 

s= R 
(x I, . . ..Xr) ’ Q=(x,, .“x )M * r 
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Then xR(A4, N) =,$(Q, N) where Q is a module of finite length and finite projective 
dimension over S. 

Hence we are led to prove the following sublemma. 

2.9. Sublemma. Let R be a Gorenstein ring of dimension n. Let M, N be C-N 
modules such that I(M) < OJ, pd#l) c CD, dimN=n-I. Then X(M,N)=Opro- 
vided HC holds on Gorenstein rings. 

Proof. Suppose HC holds on Gorenstein rings. Since M is a module of finite length 
and finite projective dimension, syz”(M) is free. Again we know (via the Koszul 
complex) that syz”(R/(x 1, . . . ,x,)) is also free, where {x,, . . . , x,,) is an R-sequence. 
Hence by HC, M-, R/(x,, . . . . x,). We note dim N= n - 1. Now whenever we have 

O+M-T-@ R 
i (Yil9**-9Yi*) 

‘0, 

the sum being finite, and { y;,, . . . , y;,,} an R-sequence, we get 

x(T,N)=x(M,N)+x 

But by [5], Th. 1, 

,N . 
> 

R 

. . ..Y.n) 

Hence x(M, N) = ~(7, N). The same argument shows x(M, N) = +x(&Z, N) for all 
kinds of linking. Thus when M-, R/(x,, . . . , x,) we have 

x(M, N) = tx 
R 

(x I* . . ..x.) 
,N =O. 

> 

2.10. We have shown in 2.2 that to prove the vanishing conjecture on a Gorenstein 
ring it is enough to prove the following: 

Given M a perfect module of finite length, Q a C-M module such that 
dimQ=n-1, thenx(M,Q)=O, n=dimR. Wechoose {yl,...ry,_l} aQ-sequence 
AnnR M which is also an R-sequence. We consider an exact sequence O- T-R’-+ 

Q-+0. Applying @W(Y~,...,Y,-A) we get 

O- 
T 

-* (Y ( 
R 2 

> 

Q 
(Y tt...,~n-~)T ,,...,Y,,-,)R (Y,,...,Y~-I)Q 

‘0, (37) 

noting that since yl, . . . , y,_ I is a Q-sequence 

Torf 
R 

(Y ~r...rYn-,)R 
,Q =O, i>O, 

> 
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(tv the Special Lemma). Now 

XR(M,Q)=XR~'(YI,....Pn-I) 
(Y 

Therefore xR(M, Q) = 0 if and only if 

(Y 

(from (37)), i.e. if and only if 

T 

(Yl,...,Y,-,)T 
l(M) 

where r(T/(y,, . . . . y,-,)r) is the rank of T/(y,,...,y,_,)T, which is the rank of 

( 

T 

(Y I, . . . . Y”-,)PQ t (Y,, ..:Y._,J 

where Q(R/(y,, . . . . y,_ ,)} is the total quotient ring of R/( y,, . . . , y,,_ ,). 
Thus on a complete intersection R to show xR(M, Q) =0 we are led to the 

following question: On a complete intersection S of dimension 1, given a module M 
with I(M) < 03, a module T with TO Q{ S} free over Q{ S} (the total quotient ring of 
S) and To&M, T) = 0 for all i> 0, is it true that f(M@, T) = r(T)f(m) where r(T) is 
the rank of T@Q{S} over Q{s)? 

2.11. Claim. To prove xR(M, Q) =0 it is enough to prove in the above situation 

f(M@, T) r r(T)/(M). 

Proof, If /(MB, T)rr(T)I(M), from the arguments above we get xR(M, Q)sO. 

Let {x,, . . . . xn} be a maximal R-sequence contained in AnnR M. We consider the 
following exact sequence: 

Since f(M) < 03, pd(M) < 03, f(L) < ~0, pd(L) < 03, from (38) we have 

(38) 

(39) 

by [5], Lemma 1. Since x(M, Q) r0 and x(L, Q) 5 0, (39) implies we must have 
x(M, Q) =0 and x(L, Q) = 0. Hence in this section we investigate the following 
question: Given a module M of finite length and a module N over a complete 
intersection of dimension 1, such that N@Q(R)-free, where Q(R) is the total 
quotient ring of R, is it true that I(M@RN)z~(N)I(M)? I do not know the answer 
in full, but the answer is “yes” in the following cases: 
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Case i: M=K=R/m. Let r(N) = rank N=r, say. Then we have I(N@,K)= 
f(N/mN) = minimal number of generators of N=p(N) and we know p(N) L r(N). 

Case ii: M is of finite projective dimension. We have 

O+N+R’+Q-‘O. (40) 

Then Q is a module of finite length. Since depth M=O, depth R = 1, from 

depthM+pdM=depthR we get pdM=l. We consider O+R’-R’-M-O a 

minimal projective resolution of M. We have 

O-Torf(M, Q)+Q’-+Q’+Torf(M, Q)-0. 

Hence x(M, Q) = 0. From (40) we have x(M, Q) = r/(M) - /(MB, N). Therefore 

I(M& N) = r/(M). 

Case iii: R = K[ [x2, xZn + ’ I]. In this case as we have seen in 1.14, N= @Ii, the sum 

being finite and 1, = (x2; x2”+ ’ 1 
prove the following lemma. 

), 1 riln, and M-, @R/Z; on the right. We first 

2.12. Lemma. If M-, M’ on the right and I(M’@,N)rr(N)I(M’), then 

/(MO, N) 1 r(N)f(M). 

Proof. We consider the exact sequences 

O+M-.,+O, 
X 

(41) 

O-N-R’-Q-O. (42) 

Since Q is of finite length, x(R/(x), Q) =O. From (41), since Torf(R/(x), Q) = 0, 

I 
,;O (-l)‘~(Tor~(M QN = ;eo (-l)‘Ud(T, QN =P, 

say. Now if /(TORN) L rl( T) that implies (from (42)) p < 0, and that again implies 

/(MO, N) rrl(M). Hence when M-, M’ on the right we have the required result. 

So to prove our result it will be enough to take N=I, = (x~‘,x~~+ ‘) and M= 
R/Ik = R/(xZk, x2” f ’ ). We then have to show since r(N)= 1 that /(l;/I;lk)zl(R/Zk) 

which is true (and easy to check). 
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